
,AD--R14@ 982 EVALUATION OF AUTOMATED CONFIGURATION MANAGEMENT TOOLS 1/2
IN ADA PROGRAMMING..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. M S ORNDORFF

UNCLASSIFIED MAR 84 AFIT/GCS/EE/84M-1 F/'G 5/i N

EEEEEEEEEEomiE
EEEEohEEmhEmhE

II

LA1111 J2.
L

I,..6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

0

:-5-

~OF

EVALUATION OF AUTOMATED

CONFIGURATION MANAGEMENT TOOLS IN

ADA PROGRAMMING SUPPORT ENVIRONMENTS

THESIS

Mark S. Orndorff
Captain, U.S. Army

AFIT/GCS/EE/84M-1

Sl.d 'ale; its

. >..---- .2MAY 15 1984

1.3 DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC) A

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

8 4 05 14 113
OW N&*%%a--

* **

:7 -7 --- Nk F WX 7 -1m NT h

AFIT/GCS/EE/84M-

* ,

.,

EVALUATION OF AUTOMATED
CONFIGURATION MANAGEMENT TOOLS IN

ADA PROGRAMMING SUPPORT ENVIRONMENTS

THESIS

Mark S. Orndorff E
Captain, U.S. Army ELECTE

AFIT/GCS/EE/84M-1 MAY 1 5 1984

A

Approved for public release; distribution unlimited.

AFIT/GCS/EE/84M-I

EVALUATION OF

AUTOMATED CONFIGURATION MANAGEMENT TOOLS

IN ADA PROGRAMMING SUPPORT ENVIRONMENTS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science Accession For
NTIS GRA&I
PT~ TAB

Di stritutior/

A V i11 W ! .., I

Mark S. Orndorff, B.A. iA*,,v i - r jr

Captain, US Army

March 1984

Approved for public release; distribution unlimited.

Preface

The Army has contracted with SofTech Incorporated to

develop the Ada Language System (ALS), which is the Army's

initial Ada Programming Support Environment. The Army

contracted with the Air Force Avionics Laboratory to provide

independent evaluation of the ALS. During the Air Force's

evaluation, the need arose for developing evaluation

criteria for the complex task of configuration management.

This need coupled with my desire to learn more about

configuration management and the Ada language program led to

the selection of this thesis topic.

I would like to thank my advisor, Major Michael R.

Varrieur, for all the time and guidance he has given me.

His ideas and suggestions during the course of the project

were most helpful. I would also like to thank my thesis-

committee members, Captain Patricia Lawlis and Doctor Henry

Potoczny. Their suggestions and comments were very

valuable.

Deep gratitude is also expressed to Mrs. Virginia Castor

of the System Avionics Division, Support Systems Branch, Air

Force Wright Aeronautical Laboratories, who originally

proposed this thesis topic and provided the necessary

resources and continuous guidance throughout the project.

Finally, I would like to thank my wife, Beth, for all

the support and encouragement she has given me.

Mark S. Orndorff

* ii

Contents

Preface....................... i

* List of Figures......................v

List of Tables......................vi

Abstract.......................viii

I. Introduction....................1

Background....................1

The Ada Language Initiative...........2
Current Software Development Practices . . . 3
The Ada Program Support Environment (APSE) . 5
Configuration Management 7

Problem Statement.................9
Scope........................9
Summary of Current Knowledge..........10
Standards.....................10
Approach.....................11
Materials and Equipment..............11

II. Configuration Management..............12

The Navy's Software Life Cycle Model.......12

Incremental Development............13
Early Prototyping..............17
Extended Correctness Analysis.........18
Management Integration.............18

Management View of Configuration Management . . 19

Configuration Identification 21
Configuration Change Control 22
Configuration Status Accounting........26

Designer's View of Configuration Management . 29

Requirements Analysis Products 31
Specification Products.............32

9 Design Products...............33
Implementation Products............34

IMPi

III. Requirements Analysis 36

Configuration Control Requirements 40

Partition Project Database 43

Support Multiple Projects 43
Support Multiple Teams 47
Provide Workspaces 48

Support Hierarchical Project Structure 49

Provide Common Libraries 53

Control Access Rights 53

Support Multiple Versions 55
Support Multiple Targets 57

Provide Traceability 59

Maintain Baselines 60

Maintain Project Data 64

Provide System Reliability 66

Maintain Object Attributes 68

IV. Evaluation of the ALS 75

Introduction to the ALS 75
ALS Support of Configuration Control. 79

The ALS Evaluation 82

General Discussion 84

ALS Deficiencies 85
ALS Strengths 88

V. Summary and Recommendations 92

Summary 92

Recommendations 95

Appendix 99

Bibliography 122

iv

List of Figures

Figure Page

1 The APSE Structure 6

2 A Traditional Life Cycle Model 14

3 The Incremental Life Cycle Model 15

4 Structure of a Single Increment 16

5 Software Configuration Control 25

6 SADT A-0: ProvideAPSE 37

7 SADT AO: Provide-CM-Support-Environment . . . 41

8 MAPSE Structure 42

9 SADT Al: ProvideConfigurationControl . . . 44

10 SADT All: PartitionProject_DB 45

11 Project Hierarchy 51

0 12 User View 52

13 SADT A2: MaintainProject_Data 65

..

List of Tables

Table Page

I Partition Requirements 46

II Access Requirements 56

III Version Requirements 58

IV Multiple Target Requirements 59

V Traceability Requirements 61

VI Baseline Requirements 64

VII Reliability Requirements 68

VIII Attribute Types 72

IX Attribute Requirements 74

X Partition Evaluation 100

A Support Multiple Projects 100

B Support Multiple Teams 100

C Provide Engineer Workspace 101

D Support Hierarchical Project Structure 102

E Provide Common Libraries 103

XI Access Evaluation 104

A Support Default Set of Access Rights . . 104

B Allow User to Modify Access Rights . . . 104

C Allow Configuration Manager to Create New
Access Rights 105

XII Version Evaluation 106

A Support Revisions 106

B Support Variations 107

C Allow user-defined Defaults 108

vi

XIII Multiple Targets Evaluation 109

A Group Modules by Target System 109

B Insure Consistency of Compiled and Linked

Objects 109

C Allow Single Object to be Used on Multiple

Targets 110

XIV Traceability Evaluation 111

A Record Relationships Between Objects . . 111

B Retrieve Objects Based on Relation to
Other Objects 111

XV Baseline Evaluation 112

A Maintain Fixed Reference Point 112

B Control Changes to Project Baseline . . 113

C Process Changes to Project Baselines . . 114

XVI Reliability Evaluation 115

A Maintain Off-line Backup 115

B Maintain Off-line Supplementary Storage . 116

C Maintain Derivation History 117

XVII Attribute Evaluation 118

A Maintain Object Attributes 118

B Maintain Object Associations 119

C Support APSE Expansion 120

D Support Retrieval by Attribute Value . 121

vii

Abstract

This investigation studied the task of configuration

management of computer software systems. First, a detailed

definition of configuration management from the perspectives

of project management and project engineers was developed.

This definition was used to conduct a requirements analysis

of the support required in automated programming

environments for the configuration management task. Based

on these requirements, evaluation criteria were developed

that were appropriate for the evaluation of configuration

management tools designed to satisfy the 1980 Stoneman

requirements document. These evaluation criceria were used

to evaluate the November 1983 release of the Army's Ada

Language System.

The requirements and evaluation criteria developed in

this thesis are designed to provide designers and purchasers

of Ada Programming Support Environments (APSE) with the

tools necessary to determine the effectiveness of an APSE

implementation in supporting the task of configuration

management of large software projects developed for embedded

computer systems.

viii

4'.° W ; ?ee , .<'~- . ¢ > '- " i- > - n,%" ,

I INTRODUCTION

This thesis will study the concept of automated confi-

,-. J guration management systems as part of Ada Programming

Support Environments. Although all Ada programming

environments should include an automated configuration

manager, the Department of Defense requirements document,

(Stoneman), does not specify the capabilities and char-

acteristics of the configuration management tool. This

thesis will present a working definition of configuration

management and a set of metrics for evaluation of

configuration management tools produced for the Department

of Defense.

Background

The complexity and cost of software developed for the

DoD has increased dramatically over the last few years, with

more than half of the software costs associated with embed-

ded computer systems (Wegner, 1980:408, Stuebing, 1980:10).

At the same time, attempts to create new systems using

existing software components have increased the complexity

of the maintenance task. The Department of Defense has made

several attempts at improving the quality and reducing the

development and maintenance costs of software systems.

In 1975, the DoD Common High Order Language program was

initiated with the expressed goal of developing a high order

' language for all DoD embedded computer systems. From the

1

V -q, * * .\, *4',' v - ,.. -.. \. ... %-*-..\,% -. .. 4. * ..

.%W>

." beginning, the use of this new language as a means of intro-

ducing effective software development and support environ-

ments was considered a major benefit of the program

(Stuebing, 1980:3).

The Ada Language Initiative. The DoD has developed a

standard programming language, Ada, which is currently in

the process of being adopted as the preferred language for

all DoD software projects. The DoD-wide use of Ada will

eventually reduce the cost of programmer training and allow

portability of programmers and programs (Buxton, 1980:67).

The major benefits from Ada result from Ada's

appropriateness to military applications, from the
portability of a machine independent language, from the

availability of software resulting from the acceptance of

Ada for non-military applications, as well as from the use

of Ada as a mechanism for introducing effective software

development and support environments for developing military

systems (Stuebing, 1980:3).

In support of this last benefit of the Ada program, the

DoD began a requirements analysis for a complete programming

% support environment. After an analysis of current program-

",jo ming support environments, the DoD published an initial

requirements document, called Pebbleman, in 1978. A second

version, called preliminary Stoneman, was published in 1979,

and a final requirements document was published in 1980.

% 2...

The 1980 Stoneman document presents a model for Ada
4 . 4

programming environments that will be used by designers of

initial environments. The Stoneman design addresses the

problems associated with software development while

realizing the limitations of the current state of the art in

programming environments. The Stoneman proposal calls for

developing an open-ended environment that is initially

consistent with the state-of-the-art (and therefore

immediately realizable), and supports easy expansion as new

capabilities become available. The software problems

addressed by Stoneman will be presented in the following

section, and then the Stoneman proposal will be presented in

more detail.

Current Software Development Practices. The computers

used for embedded systems often do not support software

development, thus the common practice has been to develop

software on a host machine and perform the testing on a

combination of simulators and the actual target machine.

This testing procedure results from the target system's

development occurring concurrently with the software

development. Testing of software developed for weapon

systems often relies heavily on simulations due to the high

cost of tests using the actual target system. While testing

a software system, various changes occur in response to

errors detected during the testing process. These changes

will result in the introduction of new versions of certain

3

components of the software system. The changed components

and other components related to the changed components must

go through a re-compilation process. The programmer

currently performs this cycle manually, with the possibility

of introducing errors by failing to re-compile all dependent

modules.

During the life cycle of a software system, the soft-

ware requirements often evolve to include development of

several different versions for various modifications of the

original system. A project manager must maintain each of

these versions throughout the life cycle of the system. The

maintenance of each of these versions involves the possible

introduction of new versions resulting from additional cor-

rections or revisions. The project manager often must re-

sort to managing this large amount of inter-related software

manually with his success depending on his own management

ability. The cost of this maintenance often reaches as much

as 80 percent of the life cycle cost of the system

(Stuebing, 1980:10).

The tools used to support the software life cycle gen-

erally consist of a compiler, linker, and editor. The

development of special purpose tools for a specific project

has not been coordinated to allow for the re-use of these

often expensive tools. These tools do not provide adequate

- support for the needs of long-term system maintenance.

4

The Ada Program Support Environment (APSE). Stoneman

* 'specifies the requirements for an Ada Programming Support

Environment (APSE), with the approach of developing software

on a host system for use on one or more target systems. The

APSE requirements were designed to provide support for the

specific problems relating to development and long term

maintenance of software for embedded systems.

The APSE design goal was to reduce the redundant devel-

opment of the tools used for the development of embedded

systems by providing a complete set of tools that will

support the entire software life cycle, including long term

maintenance and modification. Rather than produce specific

standards for all features of all programming environments,

the approach taken in Stoneman was to present a standard

structure based on four layers, as shown in figure 1, with a

specified minimum set of tools required for all Ada program-

ming environments.

The first layer, level 0, consists only of the hardware

and host software. The second layer, level 1, is called the

Kernel Ada Program Support Environment (KAPSE). This layer

consists of the database, and communications and runtime

support functions. This layer provides a machine-indepen-

dent portability interface that will be standardized for all

Ada environments.

The third layer, level 2, is called the Minimal Ada

Program Support Environment (MAPSE). This layer consists of

4...
4 4.'*, %. .*.*. 4°. . . .4. .- *.-. .-- -. *-*-..

- .~ * * *hN 4 .%5 ~

00& , .

.-. 7

-9 -7-
' APSE

~MAPS

APSE

Suric tions

JCL debugger

i .,

Mar

Figure 1. The APSE Structure (Stoneman, 1980:Figure I.F)

a compiler, debugger, linker-loader, JCL interpreter and a

." "configuration management system. The MAPSE provides a

-' minimal set of tools, both necessary and sufficient for the

*. development and main e 'ce of Ada prngrams. The fourth

layer, level 3, is (Illed the Ada Program Support

Environment (APSE). 1I, is layer contains the extensions to

2. *. ; the MAPSE that provide support for particular applications

6

~.-~--:5--77-- ,A - J--7 -7 -U~ U --twi~ -~ --. -- -. 'I '

or methodologies. This layered approach to an APSE should

provide the basis for the development of tools portable to

any Ada environment. The tools in the APSE must support the

initial software development and allow for future

enhancements and modifications of the developed software for

use on unpredicted future systems.

Initial Program Support Environments are currently

being developed separately for the Army and the Air Force.

*The Army has released its Ada Language System (ALS) for

evaluation by the Air Force Avionics Laboratory. The Air

Force's Ada Integrated Environment (AIE) is still in the

development stage. These initial environments should repre-

sent the state-of-the-art in programming environments and

will become the basis for evaluation of future environments

developed for the DoD.

Configuration Management. Software Configuration Man-

agement is the discipline of identifying the functional and

physical characteristics of a computer software item at

discrete points in the software life cycle to control

changes and maintain integrity. Configuration management

provides the means for program managers to predict the

impact of changes to computer software and to incorporate

changes in a timely manner.

From a project manager's viewpoint, configuration man-

agement is a well defined discipline with specific contrac-

tual requirements. For purposes of defining a program sup-

*7

€e" port environment, configuration management takes a broader,

and less well specified, definition. Stoneman defines con-

figurations as different collections of objects in a project

brought together to form different groupings. These config-

urations consist of two types. First, some configurations

exist as consecutive releases with one being the result of

revisions of the other. Second, some groups of configura-

tions coexist, such as separate models, resulting from

various target systems or user requirements (Stuebing,

1980:24).

The configuration manager is the software development

tool that is involved in all activities related to the

creation, modification, retrieval, archiving, and generation

of all software items. The configuration manager may also

maintain various dependencies between modules that permit

automatic recompilation, regression testing, and other

features available in advanced programming environments. In

an integrated program support environment, the task of

configuration management may require the interaction of

several tools.

The Stoneman requirements document states that config-

uration control is a "crucial problem" and requires that all

APSE's include a configuration manager, but never defines

the features or capabilities of a configuration manager.

Although Stoneman establishes the need for some level of

automated support for configuration management, it does not

8

C -. ~ . *%* ~* i. .J~t.*

specify the actual features or the method of implementation

for a configuration management tool.

Problem Statement

This thesis will study the literature on configuration

management systems and determine the characteristics of

contemporary configuration management systems. Detailed

evaluation criteria will be proposed. This information will

be used to evaluate the Army's Ada Language System. Rec-

4ommendations for future modifications and enhancements of

the ALS will be presented. These recommendations will be

useful in the design and development of future APSE's

developed for the DoD. This study is an initial attempt at

evaluating modern programming environments. This effort

will become a part of the Avionics Laboratory's overall

evaluation of the ALS. The methods developed in this thesis

will be useful for the development and evaluation of future

APSE's by the DoD.

4. ' Scope

This thesis will study the discipline of configuration

management of software systems. All features of the Army's

Ada Language System related to the task of configuration

management will be studied and evaluated. The Configuration

Management System will be studied in the following areas:

(a) partitioning the project workspace, (b) user defined

access control authorization to configuration elements, (c)

9

L4.LAx

configuration management of versions and revisions, (d)

configuration management of multiple-target systems, (e)

identification and maintenance of baseline products, (g)

archive and restoration procedures for configuration

elements.

Summary of Current Knowledge

Several systems have been developed for automating

support of software development. The systems currently

developed do not represent a complete set of tools for

weapons systems, but will provide a basis for comparison for

the features common to the ALS.

Standards

There are currently no standards for evaluating the

performance of a software development support activity. The

development of evaluation standards is a major objective of

this thesis and will be based on methods proposed in the

literature.

The final Stoneman document specifies general require-

ments, but does not present evaluation criteria. As the

development of programming environments continues, the DoD

must have a set of metrics to determine if these environ-

ments actually meet the Stoneman requirements and the needs

of a programming team. There has not been any comprehensive

study to evaluate the state-of-the-art for programming

environments and propose specific requirements to be eval-

uated and the criteria for their evaluation.
%

0 b

10

* % - *9* %*% % ' % '.. i > .. ,, .-..... .'... - j..-- *,. --. .- ,-.

Approach

The first step of this study will be to define config-

uration management. Next, the areas that need to be

evaluated will be identified and described. Once

appropriate criteria are developed, they will be documented

and presented to the sponsoring agency for approval. Once

an approved set of evaluation criteria is completed, the

Army's Ada Language System will be evaluated and the results

presented. The evaluation criteria and the actual

evaluation will be given to the sponsoring agency for use in

their evaluation of the ALS.

Materials and Equipment

0 Access to the Ada Language System hosted on the AVSAIL

VAX-11/780 is required and will be provided. Appropriate

reference material is also available.

o 11

6*

II Configuration Management

The definition of configuration management given in the

introduction to this thesis gives a broad overview of the

discipline of configuration management without specifying

those actions that must be taken by various members of a

software development team to accomplish the task of config-

uration management. In this chapter, a life cycle model

proposed by the Navy (Dept of the Navy, 1982) will be used

to study the specific actions that must be taken to achieve

effective configuration management. After reviewing the

life cycle model, the management requirements will be

reviewed as specified in current regulations and military

standards. This section will summarize the responsibilities

of the software development discipline formally labelled

configuration management. Next, the activities of the other

members of the software development team will be studied to

determine their requirements for a software development

environment that supports incrementally developed computer

software.

The Navy's Software Life Cycle Model

The Navy sponsored a program to develop a software

engineering environment that would provide a DoD-wide

standard for a software engineering environment. The

fundamental requirements for this environment were to (1)

12

'q2 .".

support the entire life cycle, (2) be methodology driven,

(3) provide some type of support for existing projects.

In the preliminary work of this project, various life

cycle models were studied to determine a basis for the

development of the environment. The Navy study concluded

that life cycle models currently used by the Navy (see

figure 2) did not provide an adequate model for the

continuing evolution of software from the time of the first

release to the time when the last existing version of the

software system is retired.

The Navy's research team determined that a new model

for the software life cycle must be developed before a

software engineering methodology could be developed and an

0 environment standardized. The proposed life cycle model is

based on four fundamental ideas: incremental development,

early prototyping, extended correctness analysis, and

management integration.

Incremental development. The major deviation from more

traditional life cycle models in the Navy's proposal is the

concept of incremental development. The idea of incremental

development is based on the development of a software system

in small, manageable increments, with each new increment

treated as a new system with additional functions over its

predecessor (see figure 3). Each increment is subject to

phases similar to the traditional life cycle model

13

I.

-. 4

Figure 2. Auroaditio9naLieyleodl(ptfthNa ,

(requirements7Cad a andis U'Tspeiiaintein

impleentaion),(seefigu et.

Figue 2. nAraditintal Liferoacle ode sofwaep oftevelopmen

provides efficient management of changes in response to

evolving requirements. The incremental model addresses the

,crucial issue of evolving software without resorting to the

14

V ' ' e " e .. o " ._., ,. ' .. /ee~ '''... -. ' ...".". ".'.'''''''' .

r.

.

Management..

Carreotnesa Analysis

" "Requirement Analsils

*s l~~,ification I

Design

| Ilnemn
.1

Relem .1

Incremment

KEY:
Ina nt

SLife Cvd, Acivitv"

I l ninlient I -* I I nem-

~levoloomrent P sa, Continuing Adotaton -2las

Delivery of Release 1

Figure 3. The Incremental Life Cycle Model (Dept of the
Navy, 1982:1-10)

15

Requirements Analysis

a' .~Speification

'i

:' "IMcrementn

4...

.v- Increment

Crremns Analysis

Figure 4. Structure of a Single Increment (Dept of

Navy, 1982:1-11)

umbrella phase labelled "maintenance" in the traditional

life cycle model (see figure 2). This single maintenance

phase covered the large majority of time, cost, and problems

in software projects developed under the traditional life

cycle model. The traditional life cycle model did not

provide guidance for the activities necessary for insuring
GOP

efficient maintenance of the software product.

16

V..

",.-.~~*~.N -.. Nag%

L , .. .,....
"

. - - - . - .. - , . .. ,-- - - ..

%'

2* "-. The incremental development model provides excellent

support for the concepts of configuration management. The

configuration management concept of baselines, referring to

a reference point or plateau in the development of a system

(Berrsoff, 1979:98), can be mapped directly into the

incremental model. This mapping provides a logical

relationship between management products and design

products.

Early Prototyping. The second fundamental idea of the

Navy's model is the need for early prototyping. Early

prototyping calls for the development of increments of the

software system that satisfy a small portion of the

requirements, but are available for testing and evaluation

early in the project development. The cost of correcting

errors in software system is much less if these errors are

detected early in the development. Early prototypes provide

a means for identifying errors in requirements and

specification early in the development and therefore greatly

reduce the cost of corrections.

Early prototyping provides for verification and

validation activities early in the development process, to

include possible interaction with the intended users. Ill-

defined or misunderstood requirements can be identified and

further clarified for use in developing the next increment.

This application of the incremental approach places

:. .S.. additional responsibility on the configuration manager by

17

. .-. "-*o' 5.. . * . * . *

requiring the development of what is currently viewed as a

complete life cycle set of configuration management products

during the production of these early prototypes. These

initial products are placed under configuration management

control with later increments managed by repeatedly stepping

through the modified traditional life cycle model, as

required for incremental development.

Extended Correctness Analysis. The next concept

considered in the Navy's model was extended correctness

analysis. Traditional life cycle models have considered

testing as a single phase in the life cycle, performed after

coding is complete (see figure 2). This practice leads to

late identification of errors and costly corrections. Even

in the incremental model, with this type of testing possible

1-, after coding of the first prototype, errors are ignored

a longer than necessary and costs are increased. For this

reason, the Navy's model calls for on-going verification and

validation throughout the life cycle (see figure 3).

The practice of extended correctness analysis will

require extensive information from the configuration manager

to be able to track requirements through to specification,

design, and implementation so that verification and

validation can be accomplished.

Management Integration. The last main concept

considered in the Navy's analysis was management

. integration. Previous life cycle models have not addressed

18I:. 18i ,

• g ' °g.'g¢, 2 Z ,'.'' £ g ; .'o2o..°.'2* .'2'....'.'..., '....-,.. .'....' .'.. .'. ..-, o,'.-.-.. .'." ...'. ...-.-

the role of management in the software development process.

-This new model considers management as an ever-present

activity requiring data (e.g. frequency of error reports,

.1 average time to detection) and directing activity (see

figure 3). This view of management will rely on information

available from the configuration manager, and management

direction will determine the structure of future

configurations.

This concept of management control throughout the life

cycle requires control over the products of each activity

within each increment of the life cycle. This control is

achieved by creation of baselines with changes to a baseline

controlled by the configuration manager, under the direction

of management. A formal change control process must be

managed including the tracking of various changes through

4the stages of approval and implementation. This tracking of

changes is the responsibility of the configuration manager.

Management View of Configuration Management

From a project manager's perspective, software

configuration management is the discipline of identifying

the functional and physical characteristics of a computer

software item, at contractually specified points in the

software life cycle, to control changes and maintain

integrity. Configuration management provides the means for

program managers to predict the impact of changes to

19

4A

"e

$. computer software and to incorporate changes in a timely

manner.

For the purposes of software configuration management,

the terms computer software item and computer program

configuration item (CPCI) both refer to any collection of

computer software that satisfies an end-use function and is

designated by the contractor for configuration management.

Individual configuration items consist of a group of

computer program components (CPC).

Throughout a system life cycle, configuration items are

defined, developed and modified based on user requirements

and concurrent system developments (e.g. changes in hardware

design may cause extensive changes in the software design).

The likelihood of a given function to change determines the

best method of implementation. Since software changes cost

considerably less than hardware changes, a function that may

change, either during development or after the first

release, often requires a software implementation. Because

-a., of the highly changeable nature of software products,

software development requires special management practices

to monitor the development of a software system, and keep

track of the historic evolution of current systems. The

discipline called configuration management handles the

problem of managing software development.

Configuration management must provide the program

manager with the information to determine the impact of

20

- .4

. * proposed changes in system hardware and software on the

software development, and to incorporate these changes in an

expeditious manner. Within configuration management,

configuration identification, configuration change control,

and configuration status accounting work together to achieve

the stated goals.

Configuration Identification. Configuration

identification describes the functional and physical

characteristics of configuration items and CPC's. From

these characteristics, configuration identification provides

information on the internal composition of a configuration

item so that managers can quickly determine what affect

proposed changes will have on individual system components.

0 Tracking specific requirements with the configuration items

that implement them, provides the means for tracing

requirement changes through the system. Configuration

identification is accomplished by a series of reports

representing progressively finer levels of detail of the

system design.

The first report maintained by the configuration

manager is the System Performance and Design Requirements.

This document represents the procurring activity's

definition of the product to be produced, giving detailed

specifications of the function, reliability requirements,

maintenance and support needs, and the environment in which

the product will operate (McCarthy, 1980:44).

21

The next report, prepared by the developing

organization, is the Computer Program Development

Specification (Part I or Type B5). This document includes

the general information flow presented in a block diagram,

interface requirements, an expandability plan, a test plan,

and a reliability plan (McCarthy, 1980:45). The Part I

specification is the procurring activity's key contractual

compliance instrument to govern computer program acquisition

(Searle, 1977:40).

The third report maintained under configuration

management control is the Computer Program Product

Specification (Part II or Type C5). This document provides

a complete description of each computer program giving the

function of each module, the global data characteristics and

the impact of each module on the global data, and a

description of the input and output of each module. This

document is placed under configuration management control

after it is approved.

Configuration Change Control. Configuration change

control provides the capability for processing changes to

the software system. By classifying changes and monitoring

resource requirements, change control provides the

capability for change tracking and traceability. At the CPC

level, change control includes the identification of all

CPC's affected by a change to a given CPC. This information

determines the testing requirements for changed modules.

22

e%..; . ir . - M .Oo- .-
-

For purposes of configuration management, proposed

changes are classified as either Class I or Class II. Since

the processing requirements differ between these two classes

of changes, they will be discussed briefly to point out the

products and relations that must be handled by the

configuration manager.
A change is designated as Class I if it affects a

technical requirement from the Part I specification, the

contract schedule, or costs (Searle, 1977:57). Other

changes that affect CPCI performance or external interfaces

are also classified as Class I. Class I changes are more

closely managed than Class II and must be formally proposed

by the contractor and approved by the procuring activity.

The use of Class I changes for refining the requirements

specification has always been encouraged, but the Navy's

life cycle model relies on Class I changes to requirements

as the principle means of evolving the system's requirements

through the incremental development process. These changes

may result in the specification of the next successive

increment (and eventually baseline) or may call for the

introduction of an increment developed in parallel with

* other increments (e.g. the development of a version enhanced

for a particular application). In either case, the proposed

change must pass through an approval cycle and either be

filed, if disapproved, or implemented as a new increment, if

23

approved (see figure 5). This process is the responsibility

of the configuration manager.

Class I changes are proposed using two forms: the

engineering change proposal, and the specification change

notice. The use of these forms is explained in MIL-STD-480

and MIL-STD-490 respectively. A system to automate change

processing, based on the use of system stored standard

forms, has been developed by General Electric (Zucker,

1983). A configuration management tool similar to the one

developed at General Electric would provide a means for

integrating the change processing with the system

development without resorting to volumes of externally

stored documents. This also would allow the use of required

information from the change proposal documents during the

implementation of approved changes (e.g. automatically

tagging modules that require changes and monitoring progress

towards completing identified changes).

All changes that do not meet the criteria for Class I

changes are considered Class II. Class II changes can be

implemented by the contractor without approval from the

procurring activity, although the procurring activity must

be notified to insure agreement with the change

classification. By definition, Class II changes do not

propagate through more than one phase of the system life

cycle. This characteristic permits simpler management, with

a one to one mapping between change proposal and affected

24

TECHNICAL
-COST, OEFINITION *

O: 'OF J 3

SOFTWARE CMANGE

* *ANALYSIS AIMPACT

NEW CHANGE PROPOSAL

RECONOPNECIPITATION

SELE P.CPIAT1 PREPARATION

CHANGE PROPOSAL PROCESSING - CONF!GURATION CONTROL

1el OMODATION SCI

LCHANG1 INCORPORATION__J

% " , , • -- . .,

rI

/4 Figure 5. Software Configuration Control Cycle (Bersoff,
1979:8)

document (e.g. a single class II change implemented in a

single module of code).

An important category of Class II changes consists of

corrections to code between versions. A record of these

changes must be maintained for each configuration item. A.4. %'

software engineering environment developed by SofTech

(Eanes, 1979) supports the concept of tracked revisions to

software components'. In this system, each software

configuration tree (corresponding roughly to a CPCI) tracks

25

v" : ',' .. ';' .,...'- : , ' "; '. . . - ... < . . . - : .:-- ';--- ;

changes to each component (corresponding to a CPC) with a

log file maintained automatically every time a change is

made. These log files for each configuration item satisfy

the requirement for identifying all Class II changes

installed since the last version (Searle, 1977:72).

Configuration Status Accounting. Configuration status

accounting is the area of configuration management concerned

with insuring that the current state of the software system

accurately reflects the system specified in the baseline and

requirements documentation (Bersoff, 1979:12).

Configuration audits are the means for formally approving

design products and establishing baselines. During the life

cycle of a software system, five different reviews and

audits are conducted to monitor the software system.

First, a System Requirements Review is conducted after

completion of the draft system specification. Completion of

the System Requirements Review results in establishment of

the functional baseline. In this review, software/hardware

studies will be reviewed and functions allocated to

software. Verifiable performance measures will be

specified.

The next review is the System Design Review. Here the

draft development specification is reviewed. The allocation

of functions to configuration items is checked for

completeness and the test plan is reviewed. The allocated

baseline is approved during this review.

26

"V, . , ' ' " '_,5 , ' ' • ' ' ' ' , .- - ." : ' . ." ' ' " • '" , '

Once the contractor has completed the preliminary

design, the Preliminary Design Review is held. In this

review, the procurring activity evaluates the contractor's

preliminary design prior to beginning detailed design. All

interfaces between CPCI's are checked for consistency and

compatability.

After completion of the detailed design, a Critical

Design Review is held for each configuration item. The

detailed design is checked to insure that the requirements

specified in the Part I specification are met. This review

is the last check of the design prior to coding and testing.

After coding and testing is completed, a Functional

Configuration Audit is held to check the performance of each

configuration item against the Part I specification. All

test results are reviewed and each approved change is

checked to insure proper implementation in the system. The

draft Part II specification is reviewed for use in the

Physical Configuration Audit. All documentation and manuals

are reviewed for completeness.

Either after completion of the functional configuration

audit or in conjunction with it, a Physical Configuration

Audit is held to examine the "as built" configuration of

each configuration item. A product baseline is produced at

the completion of this final audit.

This series of reviews and audits represents a well-

tested method of monitoring a software development project.

27

" ",'""

Although based on the traditional life cycle model, these

reviews will still be required using the incremental model.

With incremental development, a means of maintaining many

revisions of the required documents will be necessary.

Also, an automated method for monitoring the changes between

increments would greatly assist in the processing of reviews

after the initial increment is completed. A system similar

to the SofTech system described above, that insures that all

changes will be listed in the log file would permit a

procurring activity to check this log file against the file

of approved changes to see that all changes have been

incorporated in all appropriate places in the system design.

The methods presented here are designed for initial

development and specifically address the communication

requirements between the contractor and the procurring

activity. Once the system is accepted by the procurring

activity, responsibility for incorporating further changes

often shifts from the contractor to the government agency

responsible for system maintenance. To achieve effective

project management, the government agency should continue to

use the incremental approach with the same series of

internal reviews and audits during the development of each

new version of the system. Only with careful control of all

changes throughout a system's life cycle will a software

maintenance activity be able to insure that changes are

properly implemented, tested and documented.

28

Designer's View of Configuration Management

Ada programming environments are intended to support

large software projects. Large software projects assoc-ated

with embedded real-time applications are generally

considered to have many of the following characteristics

(Howden, 1982:319):

'-. (1) Three to five year development time

(2) $20 million development budget

(3) 10 year system lifetime

(4) 70 programmers with 5 - 7 managers

(5) developed by external staff and contractors

(6) unsophisticated users

(7) 1 million lines of code

(8) critical reliability

(9) formal reviews conducted to evaluate whole

design.

Working on such a project will be a variety of

personnel including analysts, programmers, user

representatives, industrial engineering personnel, testing

personnel, and clerical and operations personnel (Howden

1982:319). Each of these groups of people will be using and

creating various products during the system life cycle.

From the time development begins to the time the first

baseline is established, and between later baselines, these

products must be produced, controlled, and coordinated.

29

I,

The term configuration management is often used to

refer to the activities necessary to control these

intermediate products of the software development. Although

some confusion is likely to result from this extended use of

the term, this situation encourages the creation of an

integrated configuration management tool used for formal

configuration management as well as for control of the

intermediate products.

The concept of an Ada programming environment that will

iN eventually be capable of supporting the complete process of

program design and evolution, as described in Stoneman

-'. (Stoneman, 1980), implies the eventual development of a set

of tools supporting every member of the software development

team. For the configuration manager, this means that a wide

variety of intermediate files will be produced during the

software development. These files will be produced by tools

in the Ada environment and will often use other files,

already stored in the environment, as input. The

dependencies resulting from this flow of data provide the

necessary information for insuring that all elements used in

a configuration are current and consistent.

The task of configuration management of intermediate

products can be broken down into the following two steps:

*First, identify the products that will be produced during

the software life cycle, and the methods and tools that will

produce these products; and then determine the relationships

30

and data necessary for insuring the consistency and

correctness of these products. These two steps must be

considered for each phase of each increment of the

incremental life cycle model (requirements analysis,

specification, design, and implementation).

Requirements Analysis Products. The requirements

analysis phase leads to the construction of the System

Performance and Design Requirement--. During the

requirements analysis process, the computer system

specification, produced during system specification is

analyzed. This analysis must insure that all software

requirements specified in the system design are identified

and defined in terms suitable for software specification.

Requirements analysis is normally performed using a

semantic model such as Structured Analysis and Design

Technique (SADT), or Problem Statement Language (PSL)

(Howden, 1982:318). These models portray the requirements,

either graphically or through structured text, in a way that

produces the structure to be used in system specification.

The structure produced by the semantic model must be

captured by identifying the key terms, defining the terms,

and specifying the relations between these terms (Navy,

WO 1983:1-10). These relations must be maintained by the

configuration management tool to allow traceability of

requirements.

31

..

L V.

*. The configuration management tool must also support the

iterative development of the semantic model itself. This

includes providing a structured workspace for systems

analysis personnel that stores multiple versions of semantic

models. An individual systems analyst would be assigned a

protected workspace under the manager responsible for his

portion of the project. Within this workspace, the analyst

would be allowed to edit his design product and periodically

update the design version visible to other members of the

project development team.

Upon completion of the initial requirements analysis,

the configuration management tool will have control over the

contractually specified requirements documents, the products

of semantic modeling tools (graphic and/or textual) and a

database storing the relations created by the structure of

the software system. These products will be used in tracing

the requirements through the life cycle and in the

processing of approved changes.

Specification Products. The specification phase of the

software system life cycle leads to production of the

a,, Computer Program Development Specification (Part I or Type

. B5). This document must transform the requirements into a

precise description of the system's behavior in sufficient

detail to provide the only binding criteria for determining

the correctness of the developed system.

9 The specification process places few demands on the

.'

32

% . , . -" '., " ".- . * -*'iq - - -. ' - .' .a , '.....".".* ".....

9.:'
"- = . 4

configuration manager. The products produced (interface

requirements, expandability plan, test plan, reliability

plan) are generally unstructured text that will be stored as

,4 simple text files. These files will be organized based on

the structure developed during the requirements analysis

phase. A check for completeness will be possible by mapping

the requirements already stored in the environment to the

specifications. This mapping will produce the necessary

relations for tracing requirements to specifications.

Specification products will be produced in structured

workspaces as described for requirements products.

Design Products. The design process consists of

decomposition of the system into a hierarchy of pieces that

represent tle structure of the software system. The

hierarchic decomposition of the system produces pieces that

can each be further decomposed, independently, with clearly
-.

defined interfaces.

-V.* A wide variety of design products and intermediate
4- products are possible depending on the design methodology

chosen and the tools available to assist the design process.

In all cases, a hierarchy must be produced in a machine

understandable form. This hierarchy determines the file

structure for the implementation phase. The software

requirements must be mapped to the hierarchy to permit

4. traceability.

.. 3

•- 4**. ~ * • -a . - r - 44 44 .4

As in the previous phases of the software life cycle, a

structured workspace must be provided with access to the

appropriate tools and relations.

Implementation Products. The implementation phase of

the software life cycle has the greatest, and most clearly

defined, demands on the configuration management tool. The

heirarchy produced during system design will be used to

structure the workspace of programming teams assigned to the

project. Each team will have its own workspace with

restricted access to other areas of the system.

As implementation proceeds, a programming team will

produce, compile, and test code. The Ada programming

language provides the capability for separately compiled

program units with restricted visibility of implementation

-' details. The configuration management tool must provide for

visible interface specifications and executable

implementations. The Ada package facility is designed to

support this concept of program development. The package

specification provides the interface requirements for the

components of the package. Any programming team that will

use this package must have read access to the package

specification.

The package body provides the executable portion of the

package. Only the programming team responsible for

development of this package needs read or write access to

the package body. Teams with read access to a package

4.34
.

-_ .J -. . -.-.

specification will need execute access to the package body.

The interfacing of modules of the software system is

critical to the development of a large software project. As

modules are developed concurrently by various programming

teams, careful control must be maintained to insure that

out-of-date modules are not used by members of other teams.

A configuration management tool must maintain relationships

showing the dependencies of modules used in any desired

generation of the system or subsystem. This relation can be

automatically constructed from information provided by the

compiler and linker/loader, based on WITH clauses in the Ada

code. Whenever a modified version of a module is released

by a programming team, the modules dependent on the newly

modified module must be marked as inconsistent. An

automatic re-compile capability can be provided, but must be

implemented so as to prevent a new release of a module from

interfering with ongoing testing of other modules.

Several versions of a particular module may be produced

for various target applications. A single parent module may

call these modules in a single call statement. The actual

module desired in a particular compilation depends on the

target configuration (which is specified to the compiler at
.1.. compile time). The configuration management tool must

provide the information necessary for the compiler to

determine which module should be used for this particular

compilation.

35
4-

4 - " " •" '' " +" "" ° " .• ' .
o

"•" °"- " ," , " °. ,-

III REQUIREMENTS ANALYSIS

As shown in Chapter II, the task of configuration

management involves all members of a software development

team during all phases of the project life cycle. In this

chapter, the programming environment requirements for

support of the configuration management activity will be

described. The functions necessary for a MAPSE level

configuration management tool will be described. Evaluation

criteria for each of these functions will be listed and

explained.

At this point, the task of configuration management has

been defined, and each subtask has been explained in detail.

During this discussion, references were made to the support

Q that these tasks would require from a programming

environment. In this section, the requirements developed in

the previous chapter will be compiled and described in

sufficient detail to allow evaluation of a configuration

management tool (CMT) implementation.

The analysis of the requirements associated with the

task of configuration management will be functionally

decomposed using the Structured Analysis and Design

Technique (SADT). SADT activity diagrams will be referenced

throughout this discussion to show the functional

decomposition of the configuration management task to a

level where a detailed requirements analysis is appropriate. P

The top level SADT diagram (figure 6) shows the

36

hi

00

*1-

00

u. 0)

0

Q) 0

09)

0

0 En 4

4.)

1.4 0 s

0. 0

00
A 1.4

0J0

00

0 37

* configuration management task with the input data items and

the output products. The processes listed in the SADT

diagrams will be described in the text. The sub-headings of

this chapter will contain a cross-reference to the

appropriate SADT diagram using the numbering convention

proposed in (SofTech 1976).

Since the CMT that is to be evaluated was developed to

meet the requirements specified in Stoneman, the first step

of the requirements analysis will be to establish the level

of CM support specified in Stoneman, and apply these

' quidelines to the CM tasks in Chapter II. These two steps

will give a set of requirements for a MAPSE CMT. In

Chapter V, some additional requirements that should be

O0 addressed in future APSE's will be described.

Every MAPSE implementation is required by Stoneman to

have a configuration management tool that supports the task

of configuration control (CC). This tool must maintain

historic data "sufficient to determine the origin and

purpose of each component of the configuration and to

control the process of further development and maintenance"

(Stoneman, 1980:6.A.12, 2.B.5(8)).

A MAPSE is not required to automate the other

configuration management tasks or provide integrated support

of configuration management. However, to satisify the

requirement in Stoneman that initial environments be

"upwards compatible", Stoneman requires the configuration

38
"'S

'A. 7 7 - ,.---.. 7

- . . - .. . -A..

', management tool to use a central database that provides all

APSE tools with a uniform and accessible interface to all of

9 the project's information (Stoneman, 1980:2.B.4). The

careful use of a central database will permit the addition

of APSE level tools that provide the integrated support

necessary for effective configuration management of large

projects.

To satisfy these guidelines from Stoneman, the CMT must

perform two tasks. First, it must provide configuration

control for the entire project development. Configuration

control is described from a management perspective in

Chapter II (pages 21 - 24) and also includes most of the

tasks performed by project engineers, also described in

*Chaper II (pages 27 - 34). The CC task uses the project

structure, provided by the project manager, to process the

configuration management commands of users and other APSE

tools. These commands and the required processing will be

described in the next section.

The second task required of the CMT is to maintain all

of the project information in a central database, providing

project members with access to appropriate APSE tools, and

supporting the addition of future tools that will improve

the capabilities of the APSE. The project data must be

maintained in the database based on the structure

established by the configuration manager. All access

requests for objects in the project database are first

39

, t2 +v' , (... . .-. . .{ ., ,, ,.. ,, &." ::. .. j.. .-.-.-. ,..- •-

. ~~~~ ~W W ~ j

processed by the configuration control tool to insure that

the goals of configuration control are met. The

relationship between these two tasks is shown in figure 7

SADT AO. The processing required for this task will be

-described in the section titled "Maintain Project Data."

Configuration Control Requirements (Al)

The configuration control tool (CCT) provides a single

interface that is responsible for maintaining the

consistency of the project database. As shown in figure 8,

the configuration control tool accomplishes this by

processing all commands affecting objects contained in the

project database. When these commands are received, the

configuration control tool performs the processing necessary

for maintaining configuration control before requesting

objects from the database or creating new objects in the

database. With this arrangement, the configuration control

tool is constantly in control of the state of the project

database and is able to provide current information to all

members of the project that have the appropriate access

rights.

The configuration control tool must provide a minimum

level of processing to support project development. The

configuration control tool must support partitioning of the

database, control access rights, support multiple versions

support multiple targets, provide traceability, and maintain

40

em,

C14)

14-Ji

C) 4

4- 0 -

*H4 41

0 0

4-))

C'C)
4c w 4-

a) 0 4J.J

C.)' 0

00 > 0

.0 1.

U U

Li 0

.;I OH'41

-- 7 ----- 7--.-77--7 -- F

-F-

0 0X
E -

z

-~4-j

.4 00

C.42

o°zK V

- baselines. The relationship between each of these processes

is shown in figure 9 SADT Al. This diagram, representing a

first-level SADT breakdown of the task

ProvideConfigurationControl, shows the exchange of

information between these processes and the information

required by the configuration control tool from users and

management.

Each of the processes shown on the diagram is described

in more detail below.

Partition Project Database (All). The task of

partitioning the project database provides the basis for the

rest of the CM tasks. This task can be decomposed into five

component parts (see figure 10 SADT All). The CCT must (a)

simultaneously support multiple projects, (b) support

multiple teams assigned to each project, (c) provide

protected workspaces for each engineer assigned to the

project, (d) develop the project partition based on a

hierarchical project structure, and (e) provide common

libraries for all project members. Each of these tasks will

be further described below.

The component requirements of the task Partition Project

Database and the criteria for evaluating this task are

listed in Table I Partition Requirements.

Support Multiple Projects (All1). The APSE

database must be capable of supporting several projects

43

&

*. *.' ' - * * . - * .- -i' * * = , . S *~~ *

- 21

* *~**~*~a)

a.-

CL(U

ca a)i-

4-)

00 0 0$-4

.. 1.- 0 Ia)
CLI 4- 4-Ja

4-3 4.J

0 00

(1)) 4-1 a)a

QwC.C) .0.H0c
$4 . >,-I.I-0

4-1 0. 0 0 rl

z- L - - U - 0

4c w a) $4

.0 a) Z:
< 4J0. u 0 0--

4JJ -H

a) >.
00 (1) >

0 5.o 0.(
VJ. C ~ 0n H

(0 (U -q M a) -

(0 a) 10

0 1-j 0 L

(:1 0) a) 0 -U5.

m -Go' 5- 0 1(-

-H 4J U$. 0
4-4 U) ri I.-

00 (0 o4

9,H **

LU. *-.L- U0 _ _ _

%C4 * , . -~- o c
ELIJ

0) 0) 0)0

En U) 0
C14 U)nn En U

Cu

00e

*i . .r

u Cu

Cu u u

--4I a4
944) -

>u 0-

0(1

0 wj ----- c
V 0 u" 4

00 m A

r.. 0

0) -0

" =))

Cu u

0-

PC I -I'

454

TABLE I Partition Requirements

Requirements Evaluation Criteria

1. Support Multiple Projects. Restrict access to other
projects.

2. Support Multiple Teams. Control access between
teams.

Support multiple levels of
teams.

3. Provide Engineer Workspace. Permit multiple revisions.

Provide consistent interface

to rest of project.

Inform users of new

revisions of shared
objects.

Allow default revision.

Allow default variation.

C..- Provide automatic variation
selection.

Support user views of project
structure.

-r. F'ro i1, (ommon Libraries. Maintain consistency of
compiled objects in

common library.

Record changes to object in

common library.

Permit single copy of object

under revision at a time.

Provide Functional index.

Allow sharing of library* objects.

P.' -:

46

A j
simultaneously. Each of these projects will have engineers

and managers assigned to it. The CCT must insure that these

projects can develop concurrently without interference. The

CCT protects projects from interference by isolating the

object names of a project from the object names of all other

projects, and by isolating users assigned to one project

from the actions of other users. The isolated name space is

achieved by using the project name as the root directory for

each project. Under this root each project can create

I- objects using whatever names desired without confusion with

other projects using the same names.

Isolation from other users is achieved by creating

access rights based on project affiliation. A user can use

ID these access rights to protect objects developed for one

project from being altered (intentionally or otherwise) by

personnel working on other projects.

Support Multiple Teams (A112). The project's team

structure, provided by project management, is used to

partition this project area within the APSE database. Each

individual working on the project will be assigned to a

certain portion of the project with specific duties. Based

on the individual's assignment, he will require access to a

certain subset of the project partition. r

The CCT supports this structured access requirement by

associating project members with teams, with each team

having access to a subset of the project. Within these

447

I

177 7," R'7777 -7,-j.--~,.-- 1

.,

teams, the types of objects each individual will access will

depend on his duties. The CCT must provide a mechanism for

restricting access within a team so that individuals will

only have access to the types of objects they need. The

team structure should permit multiple levels of teams in a

single project hierarchy.
,C

Provide Workspaces (Al13). The configuration

control tool must provide a protected workspace for each

individual assigned to the project. Within this workspace,

an engineer will develop a software product for release to

the other project members requiring access to it. During

the development of this product, the engineer will, in

general, produce several revisions before a version ready

for release to the other project members is developed. An
4.

engineer's workspace must maintain these intermediate

products, allowing the engineer to recall any previous

design.

The engineer must also be provided with a consistent

interface to other objects in the project database. The

configuration control tool must provide access to the

current revision of any object referenced by the engineer,

but the release of a new revision must not be forced upon an

engineer without his knowledge. This can be accomplished by

making the current revision of referenced objects the

default version at the beginning of the iterative design

process, and informing the engineer whenever an updated

48

*.
,'U - , . ,. , , - .. , -. -

version has been released to the project members. The

engineer then must decide when to begin using the new

object.

During the development of an object in this protected

workspace, the engineer must have the capability for

revising the object, storing the revision, restoring

previous versions and releasing the object to other project

members. The configuration control tool is responsible for

maintaining the information necessary for performing these

tasks.

Support Hierarchical Project Structure (A114). The

4 structure of a project will be determined by the functional

decomposition of the project into portions that will be

Aeither further decomposed (independently) or else developed

" by a single team of engineers. The structure will also be

influenced by the requirement for parallel development of a

particular functional unit for different applications (i.e.

target systems).

The result of these Lwo influences on the project file

structure is a hierarchy of objects determined by the

functional decomposition of the project. On a single branch

1 of this hierarchy, there may actually be several different

variations of an object, each designed for a particular

application. Within each of these branches, there may be a

series of sequential revisions with one being the result of

corrections or modifications of its predecessor. Each of

49

~,-o
'.4, °

." .*- , . -. . ; . '. -' .. - . -9 .'' ''-' - . .- ." ., - - ,,, , - .. , .,. , -

. .;N these revisions is designed to perform the same function for

the same application. This arrangement is illustrated in

figure 11, Project Hierarchy. This figure illustrates the

actual project structure which contains the products of all

of the individual engineers.

The configuration control tool must isolate the user

from this multi-layered structure by automatically selecting

the correct objects for a specified application. Figure 12

User View shows three different views of this hierarchy, all

from the same level of the project structure, but for

developers of different target systems. In this diagram,

the same weapon system is being developed for the Army, Navy

and the Air Force. The same central transform is applicable

to all three target systems, but each application will have

a different afferent and efferent section specially suited

to the target system.

The configuration control tool supports the parallel

development of specialized branches in this project

structure by isolating the user from this structure and

automatically selecting the correct module when a

configuration is built. In the example above, when a

configuration is built for the Army system, the user would

only specify, when invoking an APSE tool, that code for the

Army system was desired, and the configuration control tool

would be responsible for determining what files were used,

based on the project structure (choosing the default

50I so9

I.N

I I 0

IoI

IE 0

LJn

2 0

-. 4.

4. $

w 0f 1.. (1
c) 4-4 0) w.

u 1 U) u coI I0 0 $...

4) -. C: 4.4 0

44 Q- 4 w -

.100 I.u w

0
1.4 1. . 00

I,1 0~-J51

I I '-4 ~ 4-4

.%•__.•___.___•___° -. .

Module A

; Module B Module C Module D

.Army B(2 C(3) Army D(l)

* (A) Army User's View

i [Module A

AF B(3) C(3 AF D(3

-Z(B) Air Force User's View

~Module A

1.. .

. 'Module B Module C /Module D]

Nl

Navy B(3) C(3) Navy D(1)(C) Navy User's View

Figure 12 User's Views

52

revision of the Army variation wherever it existed and using

the default revision of other modules as necessary).

Provide Common Libraries (Al15). As mentioned

earlier, the engineers assigned to a project must have

access to common libraries of objects developed by other

project members. The CCT must support this requirement by

providing a controlled project library that can be shared by

all project members. Sharing of database objects must be

, allowed in three forms. First, an individual data object

can be shared. Next, an entire revision set can be shared,

with new revisions made available to all sharing users.

.Finally, an entire subtree can be shared, including all

. .revision sets in the subtree.

Control Access Rights (A12). The engineer who develops

an object and the configuration manager responsible for

p maintaining the objects in the project library must both be

able to restrict access to the objects under their control.

There are four requirements that the CCT must satisfy to

achieve the desired level of access control.

First, the CCT must allow each user to specify a set of

default access rights that will apply to every object he

creates. These access rights can be specified based on the

team structure by listing the teams that will have a given

access to an object, or access can be specified by listing

individual users that will be allowed access to the objects.

53

The next requirement that the CCT must satisfy is to

permit project members to change the access rights of

objects in the project database. The ability to change the

access rights of an object should be one of the types of

access rights the user controls.

The next requirement which the CCT must satisfy to

achieve sa sfactory access control is to support several

types of access restrictions for both objects in the

database, and directories. The type of restrictions

implemented on any particular implementation is a design

decision, but every implementation must support the simple

and efficient addition of new access restrictions.

For example, an APSE implementation may decide to

support the specification of read, write, execute, and

attribute changing. For many projects this will be

adequate, but if a configuration manager requires more

control over objects in the project database, he must be

able to establish additional restrictions. In this example,

he may decide to add controls on deletion, sharing, and

revising.

If a single access code in the original system controls

several types of access rights, the system must permit the

individual specification of these rights as a user option.

For example, if in the original system, the write access

attribute also controlled deletion, with simple
C.

modifications, the system must support separate access

54

controls for these two operations. This capability must be

provided to the extent that operations are available with

APSE tools, so that, if desired, a user could specify by

name or team who could use each APSE tool on each object in

the database. Although this extreme case will not normally

be implemented, this capability provides the configuration

manager with the flexibility to control a project to

whatever level he desires.

Finally, access control should be provided for both

objects in the database and directories. This permits a

user to protect entire subtrees in his workspace by simply

changing the access control to a single directory.

Directory access control should not replace any of the

access controls provided for individual objects, but rather

act as a screen to gain access to the access controls of the

objects in the subtree under the directory.

Table II Access Requirements lists the requirements for

controlling access rights and the criteria for evaluating

this portion of the CCT.

Support Multiple Versions (A13). As shown in the

previous section on the hierarchical project structure,

multiple versions of objects in a project database will be

related to one another in two ways. First, there are

objects that are revisions of their predecessor. These

objects exist as a result of corrections or modifications

with both objects performing the same function for the same

55

VS. 'o2" .° "°. 2. ¢ .2 2'.-"...r 2 2 J -......

TABLE II Access Requirements

Requirements Evaluation Criteria

1. Support user default set Allow user specification of
of access rights, default access rights.

Specify default access rights

by team or by
individual user.

2. Allow user to modify Allow user to change each
access rights, access attribute.

Allow creator of object to
designate who can change
access controls.

3. Allow configuration Allow configuration manager
manager to create new to add access controls.
access rights.

Provide access control for0each APSE tool.

4. Provide access control Provide standard set of
on every object and access controls.
directory in database.

Base access control on
project, team and user
name.

application. The second relationship exists when more than

one object is created for a given function, with each object

designated for a particular application. These objects are

considered variations of each other.

As a result of both of these influences, there will

exist in the project database a large number of objects

which the user would like to refer to by the same name and

56

..

. have the system sort out which object he wants. This

service is provided by the CCT by supporting both revisions

- and variations and allowing the user to specify, either by

using the user defined default version or by completely

identifying an individual object, exactly what objects will

be used for a particular operation.

Therefore the task of supporting multiple versions is

satisfied by meeting three requirements. The CCT must (1)

support revisions, (2) support variations, and (3) allow

user-defined default values for both revisions and

variations.

The requirements and criteria for evaluating the task of

supporting multiple versions are listed in Table III Version

Requirements.

Support Multiple Targets (A14). The overall objective

of the APSE program is to "offer coat effective support to

all functions in a project team ... particularly in the

embedded computer system field" (Stoneman 80:2.B.1). The

APSE design calls for meeting this objective by adopting the

approach of developing software on a host computer for

execution on target machines. In many cases, a single host

machine will support the development of software for several

target machines as well as for the host itself. In this

situation, the CCT must organize the executable modules so

that a configuration is composed of only modules for a

single target system.

57

TABLE III Version Requirements

Requirements Evaluation Criteria

1. Support revisions. Provide automatic incremental
revisioning when objects
modified.

Provide over-write option on
user request.

Provide listing of current
revision of objects in
subtree to record state
of project.

2. Support variations. Support multiple levels of
variations.Apply single variation

specification to
all objects in sub-tree.

3. Allow user-defined Allow default of specific
defaults for both revision by revision
revisions and number.0 variations. Allow default of the most

Alwrecent revision.
Allow user defined default of

variation.

To satisfactorilly support multiple targets, the CCT

must meet three requirements. First, it must provide a

mechanism for grouping executable modules by target system.

Second, it must insure that when a configuration is linked,

or a module dependant on other modules is compiled, all

input modules are intended for the same target. Finally,

the CCT must provide a means for a single object file to be

used for several target systems when appropriate.

These three requirements and their evaluation criteria

are shown in Table IV Multiple Target Requirements.

58

* .. J..,,; ,i . ., '''"""'-.'' - '- .' . - . .. -

-27 -Z

TABLE IV Multiple Target Requirements

Requirements Evaluation Criteria

1. Group modules by target Record identification of
system. target systems for

object files and
executables.

Group objects in project
structure by target
system.

2. Insure consistency of Check target system ID when
compiled and linked compiling and linking.
objects. Reject commands that mix

target systems.

3. Allow single object to be Support multiple target ID's
used on multiple on a single object.
targets. Allow multiple target object

to appear in multiple
groupings of object
files and executables.

Provide Traceability (A15). One of the key functions

under configuration control is to be able to track

requirements, specifications, design, code and tests through

the system life cycle. In a MAPSE, there will be little

support for automatically tracking this information. An

advanced APSE will use some of the techniques from

artificial intelligence to better support this task. For

early implementations, the support which the CCT must

provide consists of providing a means to record the

relationship between objects in the database and to retrieve

objects based on these relations. These relationships

should be immune to changes in the name or directory of

Ve, 59

either object. This support would allow the configuration

manager to develop the structure for the products of the

next phase of the project life cycle by establishing objects

that have a recorded relation to the objects from the

previous phase.

These relations would provide the necessary information

for tracking a change in an object at one phase of the

project life cycle by identifying the objects in the next

* * phase that would potentially be impacted by this change.

This area of configuration control is probably the least

supported of any of the configuration control tasks, but is

also one of the most important. Considerably more research

needs to be done before effective tracking of project

0 development becomes a reality.

The requirements and evaluation criteria for this low

.. .level of support for the traceability task are listed in

Table V Traceability Requirements.

Maintain Baselines (A16). The last task performed by

the CCT supports the manager's configuration control

• .requirements. This task involves the support of project

baselines. Associated with this task are many of the same

requirements listed in the previous four categories. Within

a project baseline, there will be revisions, variations,

multiple targets, and the access to the baseline must be

6.' controlled just as access is controlled to objects in the

engineer's workspace. However, there are additional

60

,' ,4,N
,,ll~ %'

'

TABLE V Traceability Requirements

Requirements Evaluation Criteria

1. Record relationships Maintain attribute that
between objects. contains path name to

related objects.
VRelationship between objects
. not affected by change in

name or directory.

2. Retrieve objects based on Provide tool to retrieve
relation to other referenced objects.
object.

requirements that must be satisfied and some of the same

requirements must be evaluated in different ways.

In this section, it will be assumed that the

configuration manager has available the same support in the

above listed areas as do the engineers assigned to the

project. The requirements and the evaluation criteria

listed will only include those areas that are unique to the

task of supporting project baselines.

For project management, the task of configuration

control consists of establishing baselines at specific

points in the project life cycle and controlling changes to

these baselines. To accomplish configuration control,

project management needs a structured workspace designed to

carefully regulate interaction with the work areas used by

the project teams.

4

" .V" ° ' . ° " o ° . . " o ' . .~ o - o , . . " . . ° . ° • " " " - o . ° - o . . . - . " - " - - - , . . . o .

,- c-'. ". '°.
-'. -

".

The workspace used by project management will contain

baseline elements with many of the same attributes as

required for project engineers. The primary difference will

be the addition of special change control information. Each

baseline object will be developed as a result of a

requirements document with a set of approved class I changes

and a set of class II changes. The control of the class I

changes and tracking of the requirements is the

responsibility of the CCT.

Each proposed change must be entered into the project

database (management workspace). When the approval cycle is

complete, the change is either stored in a log of

S..,. disapproved changes or recorded for use in building a new

baseline. This record will contain the components that must

be changed to implement the approved change. This record is

the basis for the introduction of a new baseline (although,

in general, many approved changes will be included for each

new baseline).

This record of approved changes will include information

on the specifications, designs and modules of code affected

by the change. Project management will use this information

to assign work to various teams of engineers. When a

Jportion of this change is completed by a project team, the

team will release a copy to the project management

workspace.

62

I.

4

The change record will record which components have been

changed and released to the project workspace to monitor

progress on implementing the approved changes. When all

changed components have been released to the project

management workspace, the configuration manager builds a new

configuration by selecting the correct combination of

changed and unchanged modules. This new configuration is a

proposed new baseline.

When a new baseline is established, it becomes a

permanent part of the project database. Along with the

baseline itself are stored all of the changes implemented in

this baseline and a log of class II changes derived from the

logs of the development teams.

The task of supporting project baselines consists of

three requirements for the CCT. The CCT must maintain

multiple fixed reference points while development continues

- towards the next baseline, the CCT must control changes to

these fixed reference points, and the CCT must assist in the

processing of proposed changes and the implementation of

approved changes.

The requirements and evaluation criteria for evaluating

the task Maintain Baselines are listed in Table VI Baseline

• .Requirements.

-p.'

63

- 4

TABLE VI Baseline Requirements

Requirements Evaluation Criteria

1. Maintain fixed reference Control release from
point, engineer's workspaces.

Identify entire baseline by
single reference.

2. Control changes to Restrict modification of
project baseline, project baseline.

Monitor modification of
project baseline.

Maintain consistency of
compiled units in
baseline.

3. Process changes to Maintain log of approved
baselines, changes.

Identify objects changing in
new baseline.

Record approval status of
proposed baseline.

Maintain Project Data (A2)

As shown in figure 7 SADT AO, the MAPSE level

configuration management task consists of two components.

The requirements for the larger and more complex tasks have

just been developed. Now, the requirements for the task of

maintaining the project data will be developed.
Si

The maintenance of project data will often be performed

by several different components of the MAPSE with some

functions provided by the DBMS and some by the file manager

of the KAPSE. This task will logically be decomposed, as

shown in figure 13, SADT A2, into two components: provide

system reliability and maintain object attributes. These

64

U ..

C1.4
CYCo

00
caI

caz
u-

u

00

I&I

-44

0 4

w
cc0 1 0

0 0

00

4.4 ca

0

0 OX

-r4

65

".C7'. 777777.

two tasks will each be described below and evaluation

criteria proposed.

Provide System Reliability (A21). As described in the

previous section, the configuration control tool is

responsible for selecting the correct version of an object

from the project database based on information provided by

the user and the requesting tool. This capability is

achieved by making the configuration manager responsible for

maintaining sufficient information on every object in the

.database to choose the correct object and locate the object

for retrieval by the operating system.

Associated with this task of choosing between several

possible versions of an object is the task of maintaining

duplicate copies of objects to protect the project from

system failures. Since the information necessary for

keeping track of redundant copies of objects is similar to

that required for maintaining various versions of an object,

the task of controlling the backup of project objects falls
'

on the configuration management tool.

The MAPSE backup system uses off-line tape storage to

store a copy of objects in the project database. These

archived copies are tracked by the configuration management

.tool so that they can be retrieved when required to

reconstruct a lost object. Object backup should be

supported in several ways. A total system backup, backup of

objects changed since the last system backup, backup of

66

'"..

"'-subtrees or individual objects, and backup of a single

baseline.

Users of the system must also be allowed to use off-line

storage to store seldomly used objects from the project

database. The directory entry for these objects and

specific attributes should be maintained on-line with the

data portion and the remaining attributes stored off-line,

releasing the disc space previously held by the object. One

of the attributes maintained on-line should completely

identify the tape volume and index required for recovering

the object from tape.

This method of object recovery is supplemented by

recording a detailed history of designated objects in the

system database. This history provides the information

necessary to determine the tool used to create the object,

the other objects used as input to the tool, the parameters

applied to the tool and a script of the commands executed by

the tool. This information is all that is required to

reconstruct a lost object from the most recently archived

predecessor. This capability is protected by maintaining a

reference count for every object and preventing the deletion

of an object as long as the reference count is greater than

zero.

The requirements and evaluation criteria for the task of

maintaining reliability are listed in Table VII Reliability

Requirements.

67

A-. '

TABLE VII Reliability Requirements

Requirements Evaluation Criteria

1. Maintain off-line backup. Permit backup of entire

database.
Permit backup of changes

since last backup.
Permit backup of subtree of

database.
Permit backup of baseline.

Reconstruct database or
baseline from backup.

z Maintain index of backup
tapes.

2. Maintain off-line Allow users to store and
upplementary storage. retrieve infrequently

used objects off-line.
Maintain, in database,

specified attributes of
objects stored off-line.

3. Maintain derivation Record input objects and tool
history. used to create object.

Support forward and backward
tracing of derivations. 3

Prevent deletion of input
objects as long as
derived object exists.

4,

Maintain Object Attributes (A22). Many of the

capabilities of the configuration management tool will

depend on the use of attributes of objects stored in the

project database. This capability must be made available to

users of the system and designers of APSE tools. The

capability for maintaining additional attributes provides

the means of developing an integrated APSE.

68

I

*~"J 7. V- -1 - .% .Y'p - .---

Attributes maintained by the configuration management

Stool can be divided into four categories (Texas Instruments,

"- 1981:3-3). First, the configuration management tool must be

able to automatically maintain information in areas pre-

defined by the environment. For example, the derivation

attributes of an object must be known by the environment to4...

Zf,. permit reconstruction of derived objects. This data should
*be maintained without operator intervention.

The second category of attribute data includes

information required by MAPSE tools, but provided by the

user. An example of this type of information is the

identification of the target system for a module of code.

This information is required by the environment when
"-(.

invoking the compiler, but must be entered by the user.
-p.

* . Once entered into the environment, this information should

.~.- be available for use by all tools in the environment.

The third category of attribute data is defined by the

user and maintained automatically by the configuration

- .management tool. This category of data includes information

available from various tools in the environment that is not

normally required by MAPSE level tools. This information

must be stored and updated automatically and be available to

the user and all tools in the environment.

An example of this type of attribute would result from

the addition of a tool that manages the audit process for a

proposed baseline. This tool would require the addition of
S ..

69

' -5" * ** - . - ' "# . - . . ,- ' .-. ..0-

* ' . attributes that indicate the individuals that must evaluate

the objects in the baseline. These attributes would be

added automatically by this new tool and later used by the

tool to monitor the progress of the evaluation. A possible

use of this tool would be to monitor the progress of this

thesis. A single list of the readers and sponsors would be

stored in a file. Whenever a chapter is released to the

readers, an approval attribute for each reader would be

associated with the chapter. Also, attributes that point to

a comment file for each reader would be maintained. As

readers review each chapter, their approval attribute would

be changed to reflect their approval or disapproval of the

* chapter. To check on the current status of the thesis, the

tool would check these attributes on each chapter. A report

would be generated showing who has approved, disapproved or

not evaluated each chapter. The same tool could access the

comment files to produce a more detailed report.

It is this category of tools that provides the

flexibility required for adding the tools necessary to

create an integrated APSE. This capability must be included

in all MAPSE implementations, however, no MAPSE level tools

V%" will utilize this capability.

The last category of attribute data is defined and

maintained by users of the environment. An example of this

use of object attributes would be the addition of a new

attribute identifying the reason the object was created.

. ,.7
: . 70

o° 0

For example, the addition of a 'bugid' attribute that

contain3 an identifier of a bug that the engineer is

attempting to correct in his project workspace. If several

modules were modified, the engineer could create a list of

the versions that should be used to test the fix by

retrieving the file names of the objects whose bug id

attribute matched the bug_id identifier under study. This

list would provide the names of the modules to be used to

compile a new test version. If the test failed, these

objects could all be deleted by a single command deleting

all objects with the correct identifier.

Like the previous category, this category must be

supported in a MAPSE, but will not be used by the MAPSE

AR tools. This data must also be available for all tools in

the environment.

The first two categories of attributes provide the

information necessary for MAPSE level configuration control.

This information is maintained in the form of attributes

-, that describe and identify objects in the database. In

Table VIII Attribute Types, the attributes that must be

maintained for effective configuration control are listed

and identified as being either category I or category II.

Categories III and IV of attribute support must be provided

in a MAPSE to support further expansion of the environment,
5.. but will not be used by MAPSE tools.

-71

,..

77.-7- - -

TABLE VIII Attribute Types

Attribute Description System Provided User Provided

Tool creating object X

User ID X

Input database objects X

Date/Time stamp X

Variation/Revision code X X (1)

Script of revisions X

Parameters to tool X

Purpose of operation X

Reference count X

Object type X X (2)
O(e.g. text, code)

Target system X

NOTES:
(1) Provided automatically when sequential revision created

or manually when new variation created.

(2) Provided automatically by some tools (e.g. compiler,
linker) and manually with others (e.g. editor).

To satisfy the requirements for the task of maintaining

attributes, the CMT must maintain object attributes that

describe the objects and directories, maintain object

associations that provide the necessary links to other

objects in the project database, support APSE expansion by

allowing the addition of new attributes and associations,

and allow users to use these attributes and associations as

72

.vr r.'y..' -r ry.rrr . .. w w . r + - . - . ". - - . - r .- _+77T

.

"4. , identifiers for objects stored in the database.

The requirements and evaluation criteria for the task

. maintain attributes are listed in Table IX Attribute

- Requirements.

°-7

-.2-D

.'m

$4

4:

"" 7

,N

-I3 ' . i . , - " - " ' ' . ' " . . ' ; " ' " ' ' ' ' " " ' ' " " " , . - , " - " ' . " - . - - " , - . , - ' ' ' ' ' ' ' ' ' ' ' ' , ' - " . ' + , , 2 . " , ' ,

TABLE IX Attribute Requirements

Requirements Evaluation Criteria

1. Maintain object Provide attributes for every

attributes, object and directory.
Support addition of user

defined attributes.
Maintain attributes

automatically when
appropriate.

Permit attributes to be
modified by system users.

2. Maintain object Provide associations for
associations. every object and

directory.
Support addition of user

defined associations.
Maintain associations

automatically when
appropriate.

Permit associations to be
modified by system users.

- . Insure that associations are
not affected by changes

in path names of
referenced objects.

3. Support APSE expansion. Provide automatic attribute
support for user-added
tools.

Provide automatic association
support for user-added
tools.

4. Support retrieval by Permit retrieval of all
attribute value, objects in subtree by

attribute value
reference.

Support use of associations

as input to APSE tools.

74

.

IV Evaluation of the ALS

The Ada Language System (ALS) is an initial Ada

Programming Support Environment designed and developed by

SofTech, Inc. under contract with the U.S. Army (contract

number DAABO7-82-C-JI51). The ALS is designed to be a

complete MAPSE satisfying the objectives of Stoneman

(SofTech 1983:1-7). The configuration management features

of the ALS will be evaluated in this chapter using the

evaluation criteria from Chapter III.

Before presenting the evaluation, a brief introduction

to the structure of the ALS and the configuration management

features will be given to help the reader understand the

terms and tools discussed in the evaluation.

Introduction to the ALS

The ALS is a programming environment designed using the

four layered model of Stoneman. From a user's perspective,

the ALS consists of an ALS command language, a set of

software tools and an environment database (SofTech,

1983a:1-1). The user uses the command language to invoke

tools that create and manipulate objects in the database.

The ALS command language is a simple programming

language that is designed to support interactive use using

the syntax of Ada. The command language can be invoked

directly by a single command from an interactive terminal,

or a series of commands can be placed in a command file that

75

.1*7

4.l

will invoke each of the commands in succession whenever the

command file is called. The command language supports

structures of high level programming languages including

assignments, loops and conditionals. These features are

designed to permit users to create command files that

perform tasks not provided by any single tool in the ALS.

This allows users to customize their environment to their

own particular requirements.

,* - The next component of the ALS is the tool set. The tool

set consists of an expandable set of tools that are

available to the user through the command language. The ALS

tools are designed to support development of Ada programs

throughout the entire life cycle. Tools can be added to the

toolset either by addition of command files to the tool

X. directory or by writing and compiling new user-created

tools. All of the KAPSE functions that were used in the

initial tool set are available to users in system libraries,

for use when developing new tools. These libraries provide

the capability for expanding the APSE as required in

Stoneman.

The last component of the ALS is the environment

database. SofTech's own description of the database varies

considerably from one document to another. In the Users

Reference Manual, the database is described as a

"comprehensive database under full configuration control"

(SofTech, 1983a:1-3), while The ALS Textbook describes this

76

% ". -

".e°m°o - .',% '.. °. .'% .'.. ,° • ' ' ~ °.. . ' ' . % % . ' % , %

""'component of the ALS as "a file structure called the

- environment database" (SofTech, 1983b:1-7). The ALS

.. database does not support the operations traditionally

associated with a relational database system (e.g. cross

products, selects, and joins), but does rely heavily on tree

-.. walking algorithms traditionally associated with

hierarchical database systems. The environment database

could be better characterized as a hierarchical file

structure similar to UNIX with some added capabilities.

However, the term 'database' will be used throughout this

thesis to be consistent with the ALS documentation.

The ALS database consists of a hierarchy of directories

and files just as in UNIX. A single directory can contain a.J.

combination of other directories, files, and any number of

the other components of the database. The only other

components of the ALS database are variation headers and

program libraries.

Variation headers are similar to directories, but

instead of indicating a logical decomposition in the project

hierarchy, they indicate a grouping of equal alternatives at

-'.°' the same level of decomposition. In the example from

chapter III, a variation header would be used to structure

the afferent and efferent subtrees of the hierarchy (chapter

III, page 43).

The last component of the ALS database is the program

library (PL). The ALS documentation treats the PL as a type

77

.-. "o.

'" . of directory, however the operations and components are

totally different, so they will be treated here as a

separate database component. The PL is a directory used

solely for compiled or linked programs. All compiled

compilation units and linked object files must be placed in

a PL. The PL consists of directories and containers. The

directories within a PL are created automatically by the

compiler, based on the internal program structure, with a

directory for each package and separate procedure. In these

directories are 'containers' for each of the objects in that

package or procedure. For example, compiling a package

a called Math pax and a separate procedure called

NewtonRomberg into a PL called MyLib, would produce the

A structure shown below:

I

d MyLib
d Math_Pax
f Math Pax.SPEC(1)
f Math Pax.BODY(l)

d NewtonRomberg
f NewtonRomberg.BODY(l)

d -- directory
f -- file
(n) -- revision number

These program library entries are based on the actual

names used in the Ada program and have no relation to the

file names of the source files. The same PL entries would

. be made with all compilation units in the same file as with

. each compilation unit in a separate file. All packages

78

referenced in a compilation or link must be in the same PL.

Each PL supports a single target system.

A program library is designed to support a single

program with separate PL's created for each program under

. development. For large programs, each team or user would

have a PL in his workspace for compiling and testing his

portion of the project. A single project PL would contain

all compiled and linked components after development and

K separate testing were complete. This project PL would

eventually contain all compilation units for the program.

4. ALS Support of Configuration Control

* The ALS is designed to provide "full configuration

control." The tasks required for configuration control are

supported by a variety of ALS tools and features.

The ALS tools are functionally grouped into sixteen

categories, one of which is configuration control. The

tools included in this group perform sone tasks that are

unrelated to configuration management, and some of the

configuration management tasks are performed by tools from

* other groups (especially the file administrator and database

manager). For this reason, the tools evaluated in this

thesis will include any tool of the ALS that addresses any

of the requirements developed in chapter III. Tool names

will be listed throughout this section and in the evaluation

tables using all capital letters. Descriptions of the

79

'p..

" function and format of each of these tools is inculded in

the Users Reference Manual (SofTech, 1983a).

In addition to the tools that support configuration

management, there are ALS features that support many of the

configuration management requirements. Primarily this

support is provided by attributes and associations.

Attributes and associations are associated with every object

in the database. Attributes consist of a name identifier

and a character string value. Attributes are used to

contain information about the object and are used by APSE

tools to control access and restrict operations performed on

the object.

Associations are named relations to other objects in the

database. An association consists of a name and a list of

pathnames. The pathnames can be either relative to the

object itself or absolute (from the database root).

In addition to the file structure established in the

database using directories and variation headers, the ALS

supports a team structure for users of the ALS. Each user

allowed access to the ALS must be listed in a system defined

file maintained by the system administrator. In this file,
-. 4

the system administrator lists the user's identification

(last name) and the team or teams the user is assigned to.

The ALS supports a hierarchy of teams using a dot delimiter
to separate the levels of the hierarchy (for example,

Armyproject.moduleA.inputprocess.quality_assurance), just

-S., 80

.. ,,i o . - . I

as it is used in naming the hierarchy of nodes in the

database. The team identification and user identification

S. are used by the ALS in creating and enforcing access rights.

%J1 The ALS documentation states that a feature called the

'current project directory' (CPD) and a command called

'CHANGE PROJECT' will be added. The documentation does not

state how this will work, but it does show that the problem

of controlling multiple projects in a single ALS is being

addressed. If the CPD simply adds a top project layer to

the team id attribute, and uses this extended team id for

access control, the requirements listed here will be

satisfied.

The last feature of the ALS that must be explained

before beginning the evaluation is the protected project

database. The Project Database is designed to provide the

configuration manager with a protected workspace for objects

that have completed development and testing and are ready

for integration into the proposed baseline. The Project

Database will include a PL that will contain a copy of all

modules used in the project. The Project Database has

.. '. special access restrictions that only allow access using

special configuration management tools. These special tools
Sare designed to support the requirements associated with

maintaining baselines. The configuration manager protects

the Project Database by specifying exactly which users will

have access to each configuration management tool as well as

81

J , , • . , . . *6 . - . - . - . -. . , - --

the access restrictions on each object in the project

database.

The ALS Evaluation

The version of the ALS used in this evaluation is the

November 1983 release. This release is an interim product

provided to the Army and the Air Force Avionics Laboratory

for test and evaluation. It is not a completely implemented

ALS and the portion that is implemented has not been

completely tested. For this reason, the evaluation was

conducted in two phases. First, the documentation was

studied to determine how the ALS plans to address the

configuration management requirements. Next, the available

tools were evaluated to determine if they performed as

specified in the documentation and if they satisfied the

evaluation criteria. Tools that did not function at all,

did not function as stated in the documentation, or were not

yet available were all evaluated based on the description in

the documentation.

aA The evaluation method described above and the guidelines

from Stoneman (Stoneman, 1980: Chapter 3) led to the

following evaluation technique.

First, the method the ALS uses to satisfy the evaluation

criteria is described. Next, a series of metrics are used

I.", to indicate the status and usefulness of the ALS

A implementation. These metrics are the implementation

status, the criteria success rating, and the simplicity

82

'I'2 q ~ .- e- a.

7 ~ 7, ** -77 7- -1 7 i... .. - W-

rating. Each of these metrics will be explained briefly

.below.

The implementation status simply shows if the function

is currently implemented and operational (I); the function

is implemented, but has unresolved deficiencies (I-); the

function is designed, but not implemented (D); or is not,

and is not scheduled to be, implemented (NI).

The criteria success rating is a partially objective

rating of the level of success with which the evaluated

function satisfies the evaluation criteria. The value of

this rating shows if the ALS automatically satisfies the

criteria (S), satisfies the criteria using a combination of

ALS tools or features (S-), or does not satisfy the criteria

(U).

Criteria that are rated (S-) will also receive a rating

indicating whether or not a command file can be used to

satisfy the criteria. A rating of (S-/CF) indicates that a

command file will satisfy the criteria. A rating of (S-/M)

indicates that the user must manually invoke each tool or

feature every time the function is performed.

In areas where the ALS does not satisfy the criteria, a

rating will be added indicating the ALS support for the

development of a tool that would satisfy the criteria. A

rating of (U/S) indicates a simple combination of library

functions would satisfy the criteria. A rating of (U/U)

indicates that a new tool would be required. Criteria

83

- .
.. . . .

~T T

receiving this rating either cannot be supported using the

ALS technology or else major modifications would be required

before the necessary tool could be developed.

Finally, a simplicity rating is given to each function

that is implemented and operational. This rating ranges

from A to F, with C equating to the simplicity rating that

would be given to a UNIX like function. Although this

rating is very important in determining whether or not the

ALS functions will be used or bipassed, the rating listed

here is only one user's evaluation. A more valuable rating

would be made if a group of users were asked to rate the

function and the results were compiled.

The results of the evaluation are tabulated in the

Appendix. The tables are grouped by the functional

breakdown from Chapter III, with a single requirement

'1 evaluated in each table.

General Discussion

A summary of the information contained in the evaluation

tables developed during this evaluation would be impossible4 'J,

to the large number of topics considered and the quantity of

information presented. Instead, in this section general

conclusions regarding the suitability of the ALS to the

configuration management task will be presented. This

discussion will include some of the more significant results

from the evaluation tables, providing readers with a broad

84- . 4 .4 *1.444~ *~ , **~ 4.

overview ,-.f ie Evaluation of the ALS, and giving additional

information concerning user acceptance of the ALS. The ALS

will be viewed on a much broader scale to give the reader a

big picture of the ALS's strengths and deficiencies.

ALS Deficiencies. The greatest and most harmful weakness

of the current version of the ALS is its slow response time.

The system currently hosting the ALS is not dedicated to the

ALS, so precise evaluation of the ALS response time was

impossible, however the response on a loaded system to

relatively simple commands (e.g. list directory) was orders

of magnitude greater than the same command on a heavily

loaded system using UNIX (e.g. the AFIT VAX system), or on

the same system using VMS instead of the ALS. The slowness

of the ALS is more than a nuisance, since users will quickly

look for ways to avoid using the ALS as much as possible.

The end result will be software developed in an ad hoc

manner and delivered on the ALS simply to satisfy DoD

requirements.

A second, and related, weakness is the command language.

This component of the ALS relates to all tools, and was

" therefore not specifically addressed in the evaluation

criteria. However it is worth noting that the command

language presents another significant detractor from user

acceptance of the ALS. The ALS command language uses an

arbitrary combination of complete words and abbreviations,

* with word pairs sometimes simply concatenated and sometimes

85

"S"2" ,/" '.'.' .'-." .'-.'..'..'.''.' '-,'.," X'¢ ', ""," " k';" ", ' 4 ,
' ,

¢, -"-', ' .', ' , ,.'."£. ""'"

seperated by the underline character. The result is a

command language that is difficult to remember and use. The

situation would be greatly abated if command substitutors

were better supported. Users can create their own list of

substitutors that can be used to replace the cumbersome

command language, however each use of a substitutor must be

prefaced with the symbol '#'. Also, the substitutors are

not visible in command files unless they are either

initialized within the command file or else declared as

global substitutors initially and in every command file

where they are used. The Stoneman objective that the

environment be suitable for both novice and advanced users

is addressed by providing substitutors to permit development

of a more comfortable command language, but the current

solution should not be considered acceptable.

The next problem area is the support for expansion of

the ALS. The ALS does allow the addition of an unlimited

number of new tools. These can be added using either

command files or by compiling new tools using Ada and the

available program libraries. The program library support is

excellent and will be listed as a strength of the ALS, but

the capabilities provided by command files are greatly

restricted. The command language supports the necessary

constructs of a programming language (sequence, condition,

loop), however there is no way to use the results fiom one

tool as input to another tool in the same command file.

86

., ..:,.....,.:..:- ..,- -....-.. ...- -......-..--...-v...,.. 1...........

ID-Ai48 982 EYALURTION OF AUTOMATED CONFIGURATION MANRGEMENT TOOLS 2/2
IN RDA PROGRRMING..(U) RIR FORCE INST OF TECH
WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI.. M S ORNDORFF

UNCLRSSIFIED MAR 84 RFIT/GCS/EE/84M-i F/G 5/1 NL

EEEEohEEEEEEEE

I!

I . -

g"/ &3=

lilt 132

L1-8-I 1.25 L61.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

,'a

.

For example, the author attempted to write a simple

command file to add a 'share' access attribute to each file

* . whenever the editor was invoked (the ALS requires read

access to the parent directory to invoke the share tool, but

currently fails to operate correctly unless the sharing user

also has write access to the parent directory). The desired

initial value was the creator of the file. The first

obstacle encountered was the lack of access to the current

team id and user id from within the ALS. A simple solution

to this problem was to list the 'write' access attribute

after creating the file and initializing the ' share'

attribute with the same value (the 'write' attribute is

always initialized to the creating user's id).

A The final and unsermountable obstacle to this simple

command file was the inability to get the results of the

'LSTATTR' command (the ALS command that retrieves the

current value of an attribute such as the write access

attribute) into a form that could be used as input to the

'CHATTR' command (the ALS command used to create new

attributes). The output of ALS tools is designed for screen

display, and no method of separating the labels from the

data and using the data in a later command is provided.

The last negative observation concerns the support for

user-added attributes and associations. The ALS goes to

considerable trouble maintaining attributes and associations

for every object in the database. The usefulness of these

87

4. .2

V" *.V* VVV * v,* V %~ v. ,

2 ..
,

-W .! ' ~ 7 . --. . .*. T~~ -

features is greatly reduced by the lack of support for the

common database operations. The only use of attributes that

approximates a 'select' is in the use of variation headers.

When selecting objects under a variation header, the user

can specify attribute names and values instead of using the

variation name. This allows the user to create variations

based on multiple characteristics, with a separate attribute

created for each of the distinguishing characteristics.

This feature provides excellent support for variations and

should be expanded to permit similar select operations in

conjunction with other ALS tools, so that attributes could

be used to organize a project instead of merely providing a

labelled comment field for users.

ALS Strengths. The ALS has many features that work well

towards the goal of effective configuration management. The

Project Database, the support of multiple variations and

revisions, the off-line storage system, the library support

for additional tools, and the support for derivations all

represent significant advances in the 'state-of-the-art' in

programming environments. The support for variations and

the library support for additional tools were discussed in

the previous section. The remaining features will be

discussed briefly below.

The ALS design for a Project Database is probably the

most significant advance in the area of configuration

management. The Project Database brings the project

88

i .

development under the control of the configuration manager,

with a specially controlled set of tools designed for the

task of configuration management. This arrangement not only

provides good initial support for configuration management

(especially baseline management), but also provides an

excellent basis for the addition of advanced configuration

management tools as they are developed. The separation of

the database into two distinct areas with one for project

development and one for controlled configuration management"

allows designers of new tools to address the needs of

managers separately from the needs of engineers, and

therefore permits the development of specialized

configuration management tools.

The ALS's support for off-line storage provides several

tools for the various requirements of system users and

administrators. The ALS uses three sets of tools to support

the three different functions of off-line storage: backup,

supplementary storage, and baseline storage or transfer.

These three tool sets are specialized for a particular task,

and therefore provide automated support for a complete task

rather than requiring a combination of several more general

purpose tools. The supplementary storage tools are

especially convenient, providing users with an excellant

facility to reduce on-line storage. A single fault in the

a.. current design requires the person performing the actual

tape operation (usually the system administrator, using

89

.' " . .*'* ." " 'i ' : "*"~ ''' ,-';. €.*'. "- .*'€' .'-- , .- .. .,. * '- ..' .* "' *.',.*.'*'* . ". . .-. ''- '7

4

ROLLOUT) to have attribute change access to the objects

being transferred. This requirement needlessly destroys the

access control features of the ALS by giving someone without

any valid requirement complete access to these objects. A

change to check the attribute change access of the user

requesting the transfer to tape (using ARCHIVE) would solve

this problem without further complication.

The ALS supports derivations by automatically recording

the tools used, the input files, the command format, and the

derivation count of the input files whenever a derived

object is created. Derived objects are created as output

from a certain class of tools called 'generators' (e.g.

compiler, linker). Users can create new generators by

C developing a command file and then using the 'MAKEGEN' tool.

, One feature associated with derivations that is

particularly significant in that it would be useful

elsewhere in the ALS is the recording of the VMS filenames

of input files. Input files are recorded in derivations

using both the ALS pathname and the permanent filename

associated with the file under VMS. The use of the

permanent filename allows the ALS to always be able to

locate the original file and decrement the derivation count

when the derived object is deleted. This prevents objects

with derivation counts greater than zero from being locked

in the database whenever their ALS pathname is changed.

This support for maintaining derivation counts is excellent,

90

and should be expanded to allow users to maintain

associations with objects in spite of name changes or

3 changes in the project structure. The ALS has the

capability to track these changes, but it is not available

to the users.

In conclusion, this evaluation has shown the strengths

and weaknesses of the ALS's support for configuration

management and tabulated the ALS's effectiveness in

addressing each of the configuration management

requirements. The results presented here must now be

reviewed to determine the trade-offs that must be made so

that a satisfactory implementation can be produced given the

prevailing time and budget constraints.

49

91

V Summary and Recommendations

Summary

In this thesis, the task of evaluating automated

configuration management tools was addressed in three

phases. First, the discipline of configuration management

* was defined from the perspectives of project management and

project engineers. This definition was based on current DoD

policies and software engineering practices.

The next step was to use this definition of

configuration management to develop evaluation criteria for

configuration management tools. The evaluation criteria

were based on a requirements analysis of the configuration

management task. Evaluation criteria were developed only

0for those areas of configuration management designated in

Stoneman, the DoD's requirements document, as requiring

support in APSE implementations. This limitation was

imposed to make the evaluation criteria appropriate for the

evaluation of initial APSE implementations designed to meet

the 1980 Stoneman requirements.

In order to develop the evaluation criteria, the task of

configuration management was functionally decomposed into a

hierarchy of component tasks using the Structured Analysis

and Design Technique (SADT). Each component task was then

stated in the form of a requirement for Ada environments,

and evaluation criteria were developed. These evaluation

criteria were tabulated and presented in Chapter III.

92

4 -The final phase of this thesis consisted of applying the

proposed evaluation criteria to the Ada Language System.

The Ada Language System was evaluated using an interim

version of the software and the design documentation. A set

of metrics were used to measure the ALS's effectiveness in

satisfying each of the evaluation criteria. The

implementation status of the evaluated function, the success

of the ALS in satisfying the evaluation criteria and the

simplicity of the ALS were all addressed using these

metrics.

Considerable emphasis was given to evaluating the open-

endedness of the ALS. In each area where the ALS received

less than the highest success rating, an indication was

added to show the ease with which users of the ALS could

I. develop additional tools that would satisfy the evaluation

criteria. This rating is considered most important in

determining the robustness of the ALS, as it shows the

support inherent in the ALS design for improvements and the

addition of advanced functions.

* The processes just described produced three products.

First, a detailed definition of the configuration management

task suitable for requirements analysis was developed. This

definition can be further analyzed as the role of the

configuration management tool is expanded and additional

needs are addressed.

93

02 I.

Second, a set of evaluation criteria, appropriate to the

evaluation of Ada environments designed to meet the 1980

Stoneman requirements was developed. These evaluation

criteria are implementation independent and will be useful

in comparing various environments as additional APSE's are

developed.

The third product was the actual evaluation of the ALS.

4, This evaluation can be used by the Army in determining the

acceptability of the proposed design as well as by system

designers in determining areas for improvement in future

releases of the ALS.

The thesis presented here will assist the designers and

developers of software engineering environments by providing

a set of evaluation criteria that will give an accurate

indication of the potential for success of a proposed

programming environment. The best test of a programming

environment measures the acceptance and use of the

environment by software developers, and the improvements in

productivity, reliability, and maintainability of the

software produced using the environment. Unfortunately,

this test cannot be made until after a complete release of

the system is ready and a substantial investment in fielding

the environment has been made. Hopefully, the evaluation

criteria presented here will give an accurate indication,

early in the development process, of the eventual success of

a proposed design.

94

NO .

This thesis did not attempt to award an overall

acceptability rating for the ALS. Rather, a comprehensive

evaluation of individual requirements was developed,

accompanied by some general observations concerning the

design and performance of the ALS. The intention was to

provide the Army with enough information to evaluate the

current status of the ALS, make knowledgeable trade-offs,

and initiate changes that will improve the ALS prior to its

acceptance and general use.

Recommendations

The recommendations that result from this thesis fall

into two categories. First, recommendations for the

Idevelopers and procurrers of the ALS are made. Second,

there are recommendations for designers and researchers that

will be working on future environments that will provide

advanced functions over the current generation of

programming environments.

The next step that must be taken by those involved in

the development and fielding of the ALS is to use this list

of deficiencies for determination of the changes and trade-

offs that will be made in future releases of the ALS.

The recommended approach is to first give prospective

users the evaluation criteria presented here and have them

rank them in order of importance. The next step would be to

use this information to determine the changes that must be

95

>:.V &.' n' LN a. .P-3L. 5 W k N NP*%

S..made before release of the ALS and changes that can be

deferred to later releases of the system. The last step

would be to have representatives from prospective using

organizations apply the evaluation criteria to a later

release that has incorporated the approved changes to

determine the potential for acceptance of the ALS when

released to software developers.

The areas for future research and development in the

current generation of configuration management tools include

the configuration management tasks not addressed in Stoneman

(configuration identification and configuration status

.1: accounting) as well as advances in the areas addressed here

and in Stoneman.

The next generation of software engineering environments

will include the support of a particular methodology. The

first step that must be taken is to determine an acceptable

methodology for software development and then develop future

environments to support and enforce this methodology.

The current generation of environments have attempted to

address the tasks that are performed during the software

life cycle, and develop tools that automate these tasks.

The result is a collection of tools that work together to

simplify the activities of software development, but do not

force the use of good software engineering principles.

The role of future environments must expand to include

the enforcement of a methodology that will improve the

96

*%

software development process. The Navy's Software

Engineering Environment Work Group has taken the first step

in this direction. Their work provides the basis for the

development of the next generation of configuration

management tools. The development of a software

" engineering environment that not only simplifies the task of

software development, but also promotes the use of good

software engineering practices must be considered the

immediate goal of the software development community.

The emphasis here has been on the task of configuration

management and the tools that would support it. However,

satisfying the evaluation criteria developed here does not

represent successful automation of the task of configuration

management. This study merely measures the affectiveness of

achieving a currently obtainable level of configuration

management support without the delay that would be necessary

for the development of a satisfactory methodology or the

development of advanced tools.

This is not a stopping point or even a major advance

into a new area, but merely represents the collection of

available technology in an effective manner to create a

working system that can be expanded once a methodology has

been adopted and technological advances become available.

The need for more advanced systems that add order to the

descipline of software engineering is great, and the ALS

represents a first step towards acheiving this goal.

97

The research presented here provides a means for

evaluating currently obtainable support for configuration

management, as well as the theoretical background necessary

for additional research into more advanced support for

configuration management. This information coupled with the

development of an acceptable methodology, forms the basis

for the next step in the automation of the software

engineering discipline.

_%" .%

'..

'm..9

',;p

',p , , ,.,.j..j'.j',g' ' d.t;' ... " '.-",;,'"'".' N.',,'-'-:-'- ,'...'""''7'''-.., ''.;

Appendix: Evaluation Tables

Key to Evaluation Codes

Implementation Status:

I -- Implemented and Operational

I- -- Implemented with unresolved deficiencies

D -- Designed but not yet implemented

NI -- Not implemented or designed

44

Success Rating:

S -- Satisfies the criteria'.>?

S- -- Satisfies the criteria using combination of tools

S-/CF -- Command file will satisfy the criteria
S-/M -- Tool combination must be manually invoked

U -- Does not satisfy the criteria

U/S -- Simple combination of library functions
would satisfy the criteria

U/U -- New tool required to satisfy the criteria

4 Simplicity Rating:

A -- Simplest

C -- Equivalent to UNIX like function

F -- Most complex

-99

°o

(2

'p

CL CL.

U C/) C/C/)

Q u

U) U

0 01

.9. 0- -1. 0 (Uq
4.) $ -4) 41) c4 Vf u

3t0 ca4.) (
.- 4 0 =I.4 40 S$4

> 0 4> r=- 2p9 w-
wz ,-i C 00 4) c. 0$ w~

.9.41 0 41).. 41 0 u 41
r.9. r- r4..j (Ju 0t rq~ 4.) (U
0 4-~) 0)u 0 X: 41) mcoC

41) H. *- 4-)) 4.) (fu.) QO 0
49, r-I 4.) C0 w V.4 co 0 Ufl

41) $-4 .9Q). 0 0) Cl)
$4f 0 5i 41) * 4 0.6 a au 4.)

(U a0. 0 0U) (U 0 0 Cw
'9.1 0M 0. "a4 0 -H0 44 C-I >I(

'94~ Q9* U) 0 0)

9-4~~~ $4-494 10 0

4.a rq. $4 r4 (a

0 .U. 10. 10
4. - 0 $ -~ $4 (Uo(

-N-K E-4~ - 0-

E- 00

0 >

$4)

.0 0 (U 4 -4
4(U 41) (U1 0
.H4 0 q

.9. $4 $4l

0 0 . 0 4.) -
q 4.) 4. 4.) 0

$4 U) $4 8 (4

0- H W - (D w4-

U) a 4U
0 (4) 0 0 4

Ix (U.94)

(U ~ 9-'(U 2140

~~%* %*0
!Lt~m.) U),"!-

WC I

V C) VI) C)

0 4)c 4-) n -3r

.. a U) 00 4.1 4.4I W ri

4)> --I = c 4-> 0 w

4 .)Q 0) w U) A.*0-1 0)w w
F4h a 0W (0r0 w -) w E v-

S 3 0 000 0 0a 00 wU))(c

4- 0. 0U) 0 U) U) u
4)0 2ri w0 0 *r4- %z D

(UI E 4-1 31 A 0.0 4-4 u0I r
v a9 00 00 SdU)J.' 0 - 0 1

0 rq C 1. V0 (.U) 1.4 w m (nca - 3

>4 0 :3 -I) U) w u 4J0

w. 4-1 4 0)U 0 j 0 0 j -W. 0U) a)-
to~ r-4 U))W)1.4H01 0 - wV c ww (

0. 0) 54. 0 CD..-4=4 -I 4-H w00

0 *Hv I. 4 0 -r4 t-U).eU =P, 00) m

4) 1a 1 00 r C-C44 W 0r 0*0-4

d) 04 4 0 2 z .) Ie 40

00 4) 1.~ 0~ ~ U

--C E0 5 zC

00

HU)O

0, 4 044

(A 0

0H - 4- U 4.) "
4-1 u 6 (U) V)0

I ~ (L 0 >.))44

., H0. e.40 0

0 > 0~
wl 0 4-O

0 04 PLO0 1.1.

%-4.

a.a
4-S

U) '-

-a-

0

1.4 4.w)3-r 4

m In - 'a .

0 &n4 4) F4'
Pe-4 wi 0 r-A 1 00Wl4
to CL 0 1.4 04 0jW4
> -r4 .0O 0 41Liu ,

4 0 -H 4j) *4 1.
u- >. 0 4) 4-1 0 4 4) f4-

0)a 4 0~ M- 4-) 41
rf~~~L 0*.-4-i> 1

41~ u- 004 0) i
r4 0 FA- G.eim4 * -4

Pv) Li ~ 0 d 41. 4.J ,-4.C
0 rq 00 .w~ $4V4

rq 4i.4 0O 4) U) w 00 (
441 > 9)0. 06~r 0 4141 "0r

1.4 1.4 0 N 41(a t41.(A4 * 30 W 4
0 4 0 j r. >u u 0 00m

.4-4H

C: r.) 0) 0 : () c

a,- 00
0

g 0 U) a U

0 0

E4 c

*v4 to

0 4 0 0
0 0. *pH
1.4 cc

00
0 4 *-4 w

4.) > 1.102

.~.% 0 0 %4

Q z

4.1 wI 0 4A W4. 0-

-4 -C= uw0 41(1I 0 c 0 -.
w% r4 0 1d C) (0) 4d) -4) co) 0

> 3) rl) r 0 >

0 i W0 41d) r))0 c (-

r-4r40 4-4 U) 4) 00 4)- - 04-0 0
4. V41rI4 444 X~ 00 0 C-4U w . 0 4f*

w- .. 4) 0.r4 C U2 0 0 V) E ~400.- 44C Z0

4) 0.o- i 0. 4 UU rI1 C. 0 4)- U A .C-1 0-r
V- 1'20 u .1P 0 -4 -r 4 0 u 4)GJ t
CL 4 " cU) 0.. 4.. U 0 C 'R. WF - 4) 0 . E-M M A

41 El 1. - -)3 0 04.0 4 -) c C/ 4) OO *r)) 0 . (r0

><- 0 0-4 0 - . - $4 C0HUW 4)Z 00.0 Ok .

W Fr -4 .- ,04Ue-M,)t Ue- 4),- . U - 0 0E-' r4U -

0 0.u 0 uiU .

V.~~ 1. u4 C)0 Uo

4-4 r. w .
-H > H0 0 ., r4 .

41 c V--4 2 0 4
A w jw00 04 mr- m.i

.1- 4Iq4 4.1 i041U 0. r- 44
w . c ins. UO441 0 0

U~ TI V.0 U0 C aC "-q
Wn *-- 0 ,4inM 00 C . 00OI

r. = V-4 00D 4r-40 U C0 C
0 00wCU 0i.-4 00 0 c *rq n
i-I U -4 r O" C " -r4J~ Z 64 4

H. 0I = u m-r4u U 4-1 m u

04 (0 02 U .0 .H An .0 "-I V 0

r4 U . 0 .-4

103

141 ~ * ~ ~ *~.

u 1*V

**6L

U) CflU)

4-h

.0

*e- 0 U) 0

rj -41
u ~~ U)1 U 1 4

-cc0)21ri 0 0q
0~ 0 () - 41 E

rq 4-4 1H q $

41 0 ((20) U I(.)

Cl) E . u 1 -4 > 1 a (
co~ ~ ~ ~ L (n4 4)c Q L a -

> - 0 . C u l u >0)
41 0 1 f U u 00-4 04

-4 4 r r ~ 44 0U) 04
U)l 0 1 r0 .- 4 (A 41 02 Ui -

0) 44I 00 4. 00 0 0 0o $4.
Li 0) -4 10 ,4 0. Li 4- 4-JO
Li CO n 4-4 (n 02 'o >' 41 -- 0U

> U) 4.i --I $.a > 0 c . mu a
ha 4) 0) 41h.- 04 WC w4
0) A- -rl " =I0 (A 6 0 :
u) 6 .4-4 .0 E 20 000cc.0

0 .,10 -.r4 W 0 00 c u -H
0u 1-ha 9i0 cc

4- .4) - 0 0a =04
I-I ha 400 L 4) P-4 -4 0 Li.0.=

X- 0 cc)U 0-6) ~ r-4 E- U

00H

E-0

90 0
0 v- 0o

0r r m 0 H Li ,t
ha u 0 .0 0

- co 0)41 c 0 Ui

0 41~ ~Aj 0 * 004
0 40 00. *rI 00 u

0 -f :3>,CO041 6

0 (a 44 *a 0 Imh r-4
.r4 1--14-4 4) (A-rIfr -a .hU 0 0

0)4 v4 U)~ (00 0 waI~

;P,01 u Oi LU0 a
r-4 4-I 44-M-I C4 Li) 0
0 310 rhaWa-I 0 9 to 31C V u

S0 i >1 0 0

r"v4 0 r-I -4

104

Z:,! 7 wz- -Z- w7Z 76 7w w.YV .j

u u;

r-I I) I

00 (L -. ' 0 0)

a)i u u U

4)

01 4- 110

CU M.. *e4.. (1 4.4 C
0 ~i a 0 0) 4-)a Q

93 4.1 4e .0)00) 0
0 co4 W 0 *40.0.

HI 4 0 . 1-0 En r-4 41 0 r 0 .
4 0 0I *.a. 00 0 * r)1 r. U

cc 00 4. 1 -. 04 a)a- 4-i ,-4q4 a)-4

0- 0 cc 50 1-4 0 r-4 > x14 0E
cc 0 41 4 U *4 *.40 U 0 w w co- 1-0
w X4 0 44.0 14 U 4 0 1.10 C: t

4) r1 -00 00 0 .4-l 4 0U .- %
En 00C~ 41 v (n) r_6 4 4 UI140 M4

m co Uo0-)q0 u c 00I 0 0
14E 04 00 4-a 46) (D- 55

r-4 0 40 r.0 u- 0 5U0 4j 10c0r
Q c . "0 4)-i 5.-o 0 U3 00 U)c

> 0 Uo 4 1 > 4- .0

0 o(nc (A 0 0 0 ..) U
41 0) = 0) C:4d)-

4) 4) a)0(u4

$4 ~ ~ ~ ~ ~ -r- *r0)su4) U

.r41 0 0 14
4. V- 14 1

00 4)
go 004 En 4-

0- 000
r- S, 0 14 * f. 4 i
0- 14 (n 5, 144a
0 .C ~ a 00- 040 4

m 00 W44 14- 4I

0m C.) 14 U-I 41 00
cc 0 0 r. cc0 0 to

0 , 0 00 W~ . 9) r-I 4j

0 *.- 0 ~ 0 0 a)UO 4
) 41 -4(A 0 U 4 4 Ja 0 t

64 41 0) 0. 4.1 l) a w 41 w
01 00 U 0 0 UOO

0 3 Q (AE00 0 OU u1U

c0 (0 0)0 . 9

44 0105 4

Ln

0 (A
.H C:
41 0 u

0o >n 0)C:
>4 4) 0)4- r 0

0 4) 0 0 r.N 0

00u 00
0 0 0 410 44 r40~

0- 0 0 0(D 4 C I

m Hz: 0" 0.0 0 0 0 =

4)U V-1 0 A2j '- -H I

u 0 N4- 0in 4) 4) 4

0 9 0 ow O.n-4 >. m
l 4) 00 w148.0 F-'.-i4) E

4)-r a NU '-r4 0 ~4464 4

'4 ~ 0

V. uJ

0 0) 1
0.~4 1 U) 4

10 w 41 0
4cc u 0 U U

r.- G: 0 u 0 00

r4 H - 0 4

60 41 cc $4 am 00-4 6
r. 0C 14 MC4

0 Aj00 014 0610
rq- .4 vI -H 0 4 4

V ~ 014.4 00 V V wc

0 0~4 ~0 ~ 4i

106

ks.

SCL

u c

0 f
.,q 0) Gu

41 4

to to 0

r• 04 .i u 0-4

0 0r rn -Hr.u

> a) 0 (A 0 co

0 cc * .

,H (A M ,.

(A 0 w 1 0.4 1C) 1 4

'S U) 0 4) 1 4)
c4 0. OJ$4 14--4

go 0) -. m 0 o,

54 0 &4 "m u
I-1 GIq 0, 4J0) "OJ

:3 m- m 0. U) V U)

14 0 14 41

'-4
U) -0

00

> *) 0 1
4) 41JJ

S.0- co -4

0- .P-

-c c ' , .u
o H so u

0 C 4.U

0 00

107

NA"

UC/

0 U

r 4 >) 0
40) Cu -

(A 0 = -I . -4

oi 0- U)44 j r

a.) 4) >5 -
>u > u 1)

*~4 . r404 C03

cc 41 c

U) 0 ., -4)*~0 41 ur 41u ~ u
o 0 4.) -14- >u

w4 ~ C CuI '4*1 4

U) Cu0 CU 4

rq 0

) U) 0 U

w-4 444

4 u . r-4u c 4

04 Cu 4- U) 44.)

0)i~ 0 u I L 04j4 .-g

. 41 0.C 4) w

0*0 0 ,0 0 0~
Cu 1 u4"4 r-4 -~s.4

Cu q CuL"- Cu.-4

~ 0Cu~ U)~~108

CDCS

(a a-) m -ca 6

w.. S0 M0

ci A. 4..i H 4.1 0 iM

0 w 0- 3 44r-4 CL

>- CO j4 0 ~ rq- M 01
" o) V- .F4r /) 43 t 0

.61 >M 4J H. -0 640. 44-

X 3uv ww0 0 VO. 0
-1 00 (nt4 00 d)414 . .
0z 6, 240 w..40 w 'Hww-H0(

0 w o AjrfU)w.l. 0
-W~L w4 4.1 4 0 *4

-4 4 0 u a)"4 0 wA *r 0 u0

00 CO no.1f 0 0 C00 oc 1 0 (L) 00)

0.q u14 m4 0 *-" w ICr4lCO c

41 ICO r4 0 O2CO -0> j c 0 c .
Co W - &0 0 0C 4) W Ow 4 . 0 . 0 4 -

4140U 2u0 .00 4 0

94 0 0 0. 9-1 ri

4) C-) e
ccJ c4 0I -)- 4

4 0 '44 4. 0. w** q c 4
04 e44

1 0) m21$) w0
0r UO 0 0) -

*r4 0 4) 014 2H ;ON 0- E 4.1

14 .4 140 ") 1 1 2 0.
0 .- CO m .. U 0 a 0 00 e0i
4.1 V02ua 41 w .q 4)
m,. UOC 00 *s-4= " C.-)d 00

141 V * .0 C x 4. P-4 .r-4 AOcc

0 6 4 0 U * 00
4.1 o0U >- U 43 14 4 0

u 00.

109

u U)

6. t+4 -0 04- -

.4) 0 a :-rI(

Q) 0n 4-0.

0 U)0 aQ 0)

(1) 0- 39w a 0 U 0

0) J I4 44 W -0 *rDE-

0j 4)c r4r *4)a

0- 4 a U)00.0 CO

coo , co40 -4~. 14
-I -400- 0U) .)

r_ (. 4.0 .- I 0 U41 -1 4

cc in 0 3 i c
U) (A) u mZU2 I-0 m

- -4 E-4
-4 3 0 (n A

>4 0 > C..
-4 w:: V)~:1 -4

0 a)

H.2 *. 1.40a) a
4) M. 0 4 00(Ua

*. 41co0.

*.- OJH 41 0. 0
I e-4 U) cc 1-

0.) C.) . 4) 00I0f :304-JJ6
0a -0 0 3t0*

110

Li 1-,-777-47

* .p..

*j r.a) r

0 0 0 0

.H .14

C~ 4140.

U) 0. '4 o0.

4)) 0 C

:AU 4 r4 0

C3 C) Cu) -- cc 414
> (U U) 00c> c

4-j 4.) rj Qen* wu ,4-)

M 4-C) *H) 00z 4) an) .
C-4 mJ1O w Cw) 0
(U) 0.0 a ca .0 .o 4u-1 I-q

-4 C r. u 0 C U4-1 r-i 0 = 0
*,q En 0 0 4) U) X: 0 0 4-j e
.0 r. *rH 4(n. e41J r- . 4
Ca 0 4-1 co ca~u Cu m) c A.) acc
4) H4 Ca a~ a)~- U) en 0 02
u -W 0) a).- U Cu -r
co Cu -4 an U)n.- Ca C -4 I4J
1.4 r-4 ca I = r 11.4 u C)

*0 U) E- C) 0u v ~ e

0. Aj 0-1.4. cuQ) 4) C)l
-~., 1.4U 0 fnO n .

r.' 01 0 '-' P.
0 Cu4

0U >," = -~J)u 0o 0. r

*qH.0 -r- :>0c m w
44 u ~ 0 U 0 00 06-1 '-4 E) en* 3

*0 X >
En ~ -W Q)
en 0 0

q -6) .) 0 >

64 a4.) *h -W)0
' 14 C E Ai)H)

.61 4-j C a u0~ C) 6 EW
r.) (-C L) Q) 2 0) 1 Q

0)) C4-4C 5. Cu *rnC

4-) 0 41 0
. cc -w A-) 0

0 ~ n~ 00

-1 a Q V) u = 0 41
(a4 cu 0u 0 .4' C

> 0*41 (4-.

*4.1 0u 0 H(o3
4Cju 0 C) M 6

-4* >

-4 cc10

) wt * % . .S * *.. . .* ~ -'

U)

(n

u WI V

o0
.rq u 4i 4-1 4-4

Q) 0) 0) L) 0 0
cc 4-4 *, -1 -H Q) -H

> a*c) .0i -HCU)U-4 (n

S > ~II44 >

(U En Q) (1 0 0)

r.) r. ~000O C0) w- w0 w w

r-l H A 00 0)) (-a 4- 4-'

0) i. 41) CUW) 0ca W 0 r-m CU)
(Aco g Co 41 .- W Q~) -j) () -40) CU ca (aC0 mU U 4 4a

r4 -4 20. $4-U)-
4

co co UUO 4) 4 1- =4

0-~ 0))0E 0) 40 4l-i
O4 .j -- U)V) GO)0 0V

co u 00P4 >- 40 CU rflCU
0 Z*~ .1 4-41 4-

04- w.. A.4 C

.4, 1- ?

0~0

0) (0))

CUU4. -

0 r. 0)

0

q 4.11412

Cu 'An/

CU
-' U /2 (2 (m

2o E
pq Cu4

l u 0

ca r. ()u4V
0 ~ W-14 4)Q rj4)Q

S . aa 10 U >.14) Q -
-a00M4W c . 0 u

> o.4w= o r
% 0 .4 P '0 4 PQU) Q t co) (

4-1 r , -it -j W r

0)a c 0ca.
V 0 ri 0 41 W (1) 0 W Q) .. 0)

4-4) 0 0()E u 0)4 n>0
Ai () r- r

-4 0 C 1E: c r)u 1
p 1) r. 41 u co01- c : i)ca= 0 41021

Qu 0 4J4 - 0 " r4 (
PQ w* >- r. U) u W () (0)W I.

4- S.. -H ca ()w 4 Ua - a w 0 41r4 E 0
C: wu .4 .0 .4 2 0 u-

ca 4.-) .1QHUca uU))a) '- -Q
= 4- c a). 1 4(-

0. 0 04-44
4.J 0) 0

0 4-)

-r- U) U) r

'44

H 1130uU -4-

0

41U u

0

0
01

0

,- 4) 0q

W 00 4

AN 00 C U

0 0 0

u . 0 0. 0

U) (A U

*- 00 0 0

> 0 0>

U 0 00 0 ok
0 4-4~ - U

44 U) U U

'4.> 00.

r11

2-. 4-42%
wqC)e 0 000 CU

00

u 0 4 V

to 4-1 (1) (1)Cl

0- onI I-n 0 4)U- (a

0 ca IVI 4-) 0 aI 0 - 4-1 U

.,4 4.1 934 0 a -
1 0 0 0 qva

41 04 4) w. .0 0 (.icfD
44 Ajfl 0 404 4 0-P4 0.)

H U 4 4 x (4). -04 410(%1 -6)-4 > r44) M
0 . 4101 Vu .0 c0 0- W .0044 r- 0Nu=a 0 L
ca H c 0 0 -c : 4 0 060) r. -w J2

.r4 to : c4 go) 0 4.4 1 W 44 '-) 0 4 10 20

w o 4 U 0 01. 0 -4 A.)4 0 U M -90Ix .00 > .00 (n a) 4-'- 00 -0U
4.) in. -H m .00q d)U 0 a w 4 A r

f0 m. 04 0. 4.) "o uC m. 41 4 -4 j 0U)
m 0 4U 0 z 0. * 4) wr4 oou- Opq W 1U)4 H
00 u 4.) =- uC. a0) E0 w-4- 4 >.Ur0w 0 00w
u- 0 u. u0n-H 0 Ai m0 0-4 = 0 1. 0

41.. 0 a.. w~ 0n- V1.. U0 0 * 00 014sc
F-4 r-4 0H Wj. w. ww0 0. "j.0

0 V) 0Q 04 0.0. na .0-44. c1. -M 044WM
10 6 00 . -WJ E/0. A0 i

4.) 4 bg4 ~ 0.i 4U wO . 0.0

z H

0 Q~4 a) 04 4)Cl
w4, cc .- w 0

44 4 0 04 - 44 0.
0 0 0 0) 0 -1
OW4 m0 (A 0

:3 4) =1 .o : .0 0 0

0 -40 -9 01 0Vt Yc - C
.rf 0 u U 4- 1C ,
41 4. 4.0 w4-4 (a r-4. 0 0 0 A

5' 1.4 0) 01 00 0 0

> 0".

0~2.2 .00 .0 I02 .0I.0 ~

0 4

Ln)

4

5., 0

S4 s- rI 0) 0 I

0 4] >- 4)-0
0 4.1

01. 0.. 44.4I J

0u 41 0 *
>- 5j 64 a)44 41 Mu

ru4 0)U 0 0J (-n- -r- 0 S-
* 4,4r-4. 410 A 4 W4-4.4

I. 41 U).r - 'r -4 r4
4.1 4-4 -u4) 0 0 4 - 4..44

M 4) 4-1 co $-oQ.- 04 0. M 4) a(M 44
4) 0 Q.)1.. -4 04 u (j 4) . IU)

.4- >u 4i-) m- 4.14. =.41. I.J M4)
.0N r4 4. 0 ~0 aww -U. 1

co 3t4 C 4iu co 4-4) > -E 0) -r4

0 ~ w. Au -r) U)4 "- C 1 (A . r. i-0 0
F-4 4-1 >- --4 .0 u-I..~ >,Q UH 4 H =

~~9 00 JJ j)rI

4 ~CuCur u4r4 4)4 (0

9x w U r..~u-U4--U -H

(*) 0 ~ =UH)

41 c 0

04 >- =4),4-4)C

5.r. 4)6 4 r r

F4" Cu -H A

5,*) .- .) 44 .- 1.0l4)
P4 -4 W Ur. Mu 4I 1

>) 0 u4.1e

r- I 0))

116

.V).! -

4.

M (A

0 0

r-4 E4 a -4

4 . ,- ,,=, - .

,o 0 $, $4 1 , .
• . 0 0 0 "'-4

4 a 44 a0 Co0 0 U)

*** $4 .IU "4 I

> -Q 0r0 I-g UQ.. ,

s-q r4 .4 0~0
0 4,) 4 0 0t Co u Co j ue)

W!* u w" 41 ,A. o -0

>s- ws- F4 0Co0 0

-H C U) 6o 4) 4 >% W w M

W r- 0 V 44 co 4 (A.

E-. a) 44r 44

0 0 0 " cc a,,-

01

- 4'4

W41 0

Co i 64t c 4

-W- wo 000 (A 0 o
0J to r- 0r 0.

1 0 41 --)-a
0r r-4 0C *A

$4 .04. u44o Ucc. 0) Xoi * 00 4
0 , jA r0 4J0 W4'- 0.=0 0

m w 0.4) 0 0 A) 0r C4
>1i > 41 I

Co-u-i4 - -. .
-•, - -i i "- . .- '- - .s-I ~ 0 0 $4Co 01 07

CoL $4, %.0 I*. .

.1~CL

U)

P- 41 14

u -r u - 4

0 41 ") 41

c Aj o

0r. 0 .4 ., (
w ~ 41 >4 $4 (A W* 0)0

01 C: 0 0) 4) $4
41 H1 I4

a) U 14S 00
0 41 V -0 4-1

iI 0r4 *,.4 r- 0 :30)

>4 4.' a) coI40 0~~1..-

X c ~ 0 r. v. U)-
..) 0 1n- 0E-V~

01 w~40 ,i U

U 4 Q. y.4

040

1 40 04 410~ 0

41 0 to .

.1~ 41 C 1w

:3u 0 1 .0-

0 .01.) . H4j r4(
*i-I 41 0 w41

14 04 0 O 4. 0 &
41 0o a1 41 4

>%u (4.J eI .0 J4 U

1. L 0) ~ -4 r_ * $-1 1
0) .0 6 &* r44 -4J C6 4

a >- M- w) 0a 0. 0-i* (h

-r- ~~4 141 0 .0'

0.

14e 004.

0 rl

m U) 4) M rq)
>)(a. -4

w 4.) co 0) - r l)

r- -I4 c

Q) 41c r1Iu . 04
1 .,1

mJ (o M U M >

-4 (U c U) r. (U*.U M H

41 > >1 Ha. 0. cU.O 0)-i r 0 0-

to 0 0, (Uo 0 04 0~ (UU)0 c

.9- .0 0p- p-1 4.4 r.3 (. 0.m m V(4
1.1 cc3 *r4 ~- 4 M (U 3)1

to 0U (U =00 (U(0

4.3 *r) 0~ (r >1(UU

U)U)4(

(n 0 r.2 0 C/) (

=5 rq U) 0)4) -

*5.4 U 44 M U3 U)(0
E-. 0) 0 - . 1 - 0 4

(U a 0*~ U) 4 4U (U> r)0) (

U,- 0) u m4 4-0 *j V.
4.3 4. 0

(U 00w) w r (0)*g-I -rIu 0
0. .- 4 0)UVa Q 44j 0OW 4J4 U) 0U M
'4q (n 04 0(1 mv4-(U) .,IU (Uo% a
U. 4*I u ErU 0(4. (U 4-4 n.=30(

U 4 r 0.(wU(*-ri 6 4-1
4)0w w 4* 4-4 -H*- Aj (U '4-

00 4 0)U -r U)F3' 0(U .I U0 0
91 ~ 0 U)_- S(UU.(2,- U. .

119

-0 . -9-10

9, 0

r=10

0 d) 0 m
m -4 0j -4 r- (04j

4o.:4 "-4 0 -4
03 (o 0 0 4

P- e -4 0 c.

.- 4 0i 01.o j " 4-r4

>~ ~ >) 4

4.r 4

w . 0 -10 0.

1.. 4.) 40 3t CO

(A U Q4. 0044.4

"a ". r. we=r.

I-I w. . 0 co In 0.
I-I 0U I.0J e~i .00. -i

, 0 414 w2..G 000 4 w4
(a 4) 0 000 41 t

0 r4o) MO (u
64 2-. 04 .- 0

-H C 4-4 4J -H . 1 H C

0o 0
>1 $4 14 $

.93 I .
to C

1209

u D

-10. U)
.0U) 104

>% rq En) I 0 4 44CU I 4 '-r- 0 -1 M
-4 0 x Zr

0l (Du 0 000 C

oj 'ri En 43 I(oE

0 04 .,1- 0 u0
m ~ Q. " 4) 0) 06

0) 0. (n U4) -H 4 U

E)

0-4- 0U)

03- .0 *.4 0)

m -41) c0q- r41~
q rq 0.0 > ~ U

.0 0 -4 14 OU) 4)E

.r~ 4 >)0J 440 4C
1C4 ., 4. . .0 4) 0 -r4 0

.4M 4.4 p4 0044.
4-w) w4I-Cl 0
~ 4.4 r- 41. 41 OO 54)

0 O~41 w u41 .J
0. q 0U0 00 0 V

Q. 0 0 .- 4 W . 0 co) -

W >1. 0) 0 0i
U)0 U)2U)) 0-1.4

12

4.) 5

BIBLIOGRAPHY

Bersoff, Edward H., et. al. "Software Configuration
Management: A Tutorial," Computer: 6-14 (January 1979).

Buxton, John N. and Larry E. Druffel. Requirements for an
Ada Programming Support Environment: Rationale for
Stoneman," IEEE Computer Society's 4th International
Computer Software and Applications Conference. 66-72.
NewYork, NewYork, IEEE, October 1980.

Department of the Navy. A Software Engineering Environment
for the Navy. Report of the NAVMAT Software Engineering
Environment Working Group. March 31, 1982.

Eanes, R. Sterling, et. al. "An Environment for Producing
4 Well-Engineered Microcomputer Software," Proceedings of

the 4th International Conference on Software
Engineering: IEEE, 386-398 (1979).

Howden, William E. "Contemporary Software Development
Environments," Communications of the ACM, 25 (5): 318-
329 (May 1982).

Huff, Karen E. "A Database Model For Effective Configuration
Management in the Programming Environment," Proceedings
of the 6th International Conference on Software Engin-
eering: IEEE, 54-61 (1981).

Intermetrics, Inc., Ada Integrated Environment I Design
Rationale, Prepared for Rome Air Development Center,
Intermetrics, 15 March 1981.

McCarthy, Rita. "Applying the Technique of Configuration
Management to Software," Tutorial: Software
Configuration Management. 42-47/ New York: IEEE
Computer Society, October 1980.

Metzger, J.J. and Dniestrowski, A., "PLATINE, A Software
Engineering Environment," 1983 Softfair -- A Conference
on Software Development Tools, TechniquesL and Alterna-
tives. 193-199. Silver Spring: IEEE Computer Society,

Notkin, David S. and A. Nico Habermann, "Software
Development Environment Issues as Related to Ada,"
Tutorial: Software Developments. 107-137. New York:
IEEE Computer Society, 1981.

122

%

.q

Searle, Lloyd V. An Air Force Guide to Computer Program
Configuration Management. Prepared for Deputy for Com-
mand and Management Systems, Electronic Systems Divi-
sion. Santa Monica, CA, System Development Corporation,
August 1977.

SofTech, Incorporated. ALS VAX/VMS Target Users Reference

Manual, November, 1983a.

------. The ALS VAX/VMS Textbook, November, 1983b.

---------. An Introduction to SADT Structured Analysis and

Design Technique, Waltham: SofTech, November, 1976.

"Stoneman," Requirements for Ada Programming Environments,
Department of Defense, February, 1980.

Stenning, Vic, et al. "The Ada Environment: A Perspective,"
Tutorial: Software Developments. 36-45. New York: IEEE

Computer Society, 1981.

Stuebing, H. G. "A Modern Facility for Software Production
and Maintenance," IEEE Computer Society's 4th Inter-
national Computer Software and Applications Conference.

407-418. NewYork, NewYork, IEEE, October 1980.

Texas Instruments, Inc. Ada Integrated Environment III
Computer Program Development Specification. Lewisville,
TX: Report prepared for Rome Air Development Center,
RADC-TR-81-360, Vol II, (December 1981).

Wasserman, Anthony I., "The Ecology of Software Development

Environments," Tutorial: Software Developments. 47-52.
New York: IEEE Computer Society, 1981.

Wegner, Peter. "The Ada Language and Environment," ACM

SIGSOFT, Software Engineering Notes, 5 (2): 8-14 (April
1980).

Zucker, Sandra, "Automating the Configuration Management
Process," 1983 Softfair -- A Conference on Software
Development Tools, Techniques, and Alternatives. 164-
172. Silver Spring: IEEE Computer Society, 1983.

123

V.'

Vita

m

Mark S. Orndorff was born on 25 May 1955 in Arlington,

Virginia. He attended Washington-Lee High School in

Arlington and graduated in 1973. In September of that year,

V.. he enrolled in Brown University in Providence, Rhode Island.

-- After one year of study and a year employed by Western

Electric, he transferred to the University of Virginia in

Charlottesville, Virginia and subsequently graduated with

High Distinction, receiving a Bachelors of Arts degree in

Environmental Science in May 1978. After graduation,

Captain Orndorff was commissioned in the U.S. Army and

attended the Signal Officers Basic Course at Fort Gordon,

Georgia. He was then assigned as a platoon leader in B

Company, 5th Signal Battalion, 5th Infantry Division

(Mechanized) at Fort Polk, Louisiana. While at Fort Polk,

he also served as a platoon leader in A Company and as the A

Company Commander. After leaving Fort Polk, Captain

Orndorff attended the Signal Officers Advanced Course at

Fort Gordon, Georgia and the Teleprocessing Operations

Course at the Air Force Institute of Technology at Wright

Patterson AFB, Ohio. After completing the Teleprocessing

.~.Operations Course, he entered the Air Force Institute of

Technology School of Engineering.

Permanent address: 883 N. Jefferson St.
Arlington, VA 22205

I. " !

.o €.

UNCLASSIFIED
SEcURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unJlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMeER(S)

AFIT/GCS/EE/84M-1

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFITIENG (If appiicable)Air Force Institute of Techno ogy

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Codel

Wright-Patterson AFB, Ohio 45433

G. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

11. a UAy S6 e Configuration Manage ent

T-lE ..;n Ari Py- y- nr mn 0.ppn. - 1nxirnnmn _

12. PERSONAL AUTHOR(S)

Orndorff, Mark Stephen
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo .Dyj 115. PAGE COUNT

MS THESIS FROM TO 1984, MAR, 7 132
16. SUPPLEMENTARY NOTATION ~rYia~ijddmE1W55imi 1j| /5

lor Reseoih and Prolessloacl Derrdopsm W

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse n

FIELD GROUP SUB. GR. CONFIGURATION MANAGEMENT, ADA, ft"IrTMVI"UMENTS

C U SOFTWARE ENGINEERING ENVIRONMENTS, APSE, SOFIWAREMAINTENANCE

C. A TContinue on reverse if necesary and identify by block number)

.This investigation studied the task of configuration management of computer

software systems. First, a detailed definition of configuration management from the

perspectives of project management and project engineers was developed. This

definition was used to conduct a requirements analysis of the support required in

automated programming environments for the configuration management task. Based on

these requirements, evaluation criteria were developed that were appropriate for the

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEOIUNLIMsTEO 9 SAME AS RPT. 0 OTIC USERS 0 UNCLASSI I" I l)

'2 h. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(IncludeA na Codei

M.R. VARRIEUR 513-255-3576

DO FORM 1473.83 APR EDITION OF I JAN 73 IS OBSOLETE. IIN('I,ASS I FlI)
SECURITY CLASSIFICATION OF THIS PAGE

_- '-,S• '% . S -. * . - .-' * *S 'S ~t

UNCLASSIFIED
tSCURITY CLASSIFICATION OF THIS PAGE

evaluation of configuration management tools designed to satisfy the 1980 Stoneman

requirements document. These evaluation criteria were used to evaluate the November

1983 release of the Army's Ada Language System.

The requirements and evaluation criteria developed in this thesis are designed

to provide designers and purchasers of Ada Programming Support Environments (APSE)

with the tools necessary to determine the effectiveness of an APSE implementation in

supporting the task of configuration management of large software projects developed

for embedded computer systems.

[INC LASS I F I hD

~~SECURITY CLASSIF,'ATION OF THIS PAGE"

A', ow

'7r

". 41- 4141 1

1 0't

Al--

4cr4

W'jt "I .~ 7 f .

- ~ ,~~nMM,

V-3..-~A . -'

tit~'

6~.,Ar

0e 1 ,0

